
policy𝑠𝑒𝑛𝑡𝑟𝑦

Feb 08, 2020





Introduction

1 Overview 3

2 Comparison to other tools 9

3 Installation 13

4 Command cheat sheet 15

5 Writing IAM Policies 19

6 Querying the IAM Policy Database 25

7 Docker 29

8 Initialization (Optional) 31

9 Terraform Demo 33

10 Terraform Modules 35

11 Contributing 37

12 Library Usage 47

13 Implementation Strategy 75

14 IAM Policies 77

15 Minimization 81

16 Indices and tables 83

Python Module Index 85

Index 87

i



ii



policy𝑠𝑒𝑛𝑡𝑟𝑦

Policy Sentry is an AWS IAM Least Privilege Policy Generator, auditor, and analysis database. It compiles database
tables based on the AWS IAM Documentation on Actions, Resources, and Condition Keys and leverages that data to
create least-privilege IAM policies.

Organizations can use Policy Sentry to:

• Limit the blast radius in the event of a breach: If an attacker gains access to user credentials or Instance
Profile credentials, access levels and resource access should be limited to the least amount needed to function.
This can help avoid situations such as the Capital One breach, where after an SSRF attack, data was accessible
from the compromised instance because the role allowed access to all S3 buckets in the account. In this case,
Policy Sentry would only allow the role access to the buckets necessary to perform its duties.

• Scale creation of secure IAM Policies: Rather than dedicating specialized and talented human resources to
manual IAM reviews and creating IAM policies by hand, organizations can leverage Policy Sentry to write the
policies for them in an automated fashion.

Policy Sentry’s policy writing templates are expressed in YAML and include the following:

• Name and Justification for why the privileges are needed

• CRUD levels (Read/Write/List/Tagging/Permissions management)

• Amazon Resource Names (ARNs), so the resulting policy only points to specific resources and does not grant
access to * resources.

Policy Sentry can also be used to:

• Audit IAM Policies based on access levels

• Query the IAM database to reduce manual search time

• Download live policies from an AWS account auditing purposes

• Generate IAM Policies based on Terraform output

• Write least-privilege IAM Policies based on a list of IAM actions (or CRUD levels)

Navigate below to get started with Policy Sentry!

Introduction 1

https://github.com/salesforce/policy_sentry
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html
https://policy-sentry.readthedocs.io/en/latest/user-guide/analyze-policy.html
https://policy-sentry.readthedocs.io/en/latest/user-guide/querying-the-database.html
https://policy-sentry.readthedocs.io/en/latest/user-guide/downloading-policies.html
https://policy-sentry.readthedocs.io/en/latest/terraform/terraform-demo.html
https://policy-sentry.readthedocs.io/en/latest/user-guide/write-policy.html


policy𝑠𝑒𝑛𝑡𝑟𝑦

2 Introduction



CHAPTER 1

Overview

Policy Sentry is an IAM Least Privilege Policy Generator, auditor, and analysis database.

1.1 Motivation

Writing security-conscious IAM Policies by hand can be very tedious and inefficient. Many Infrastructure as Code
developers have experienced something like this:

• Determined to make your best effort to give users and roles the least amount of privilege you need to per-
form your duties, you spend way too much time combing through the AWS IAM Documentation on Actions,
Resources, and Condition Keys for AWS Services.

• Your team lead encourages you to build security into your IAM Policies for product quality, but eventually you
get frustrated due to project deadlines.

• You don’t have an embedded security person on your team who can write those IAM policies for you, and there’s
no automated tool that will automagically sense the AWS API calls that you perform and then write them for
you in a least-privilege manner.

• After fantasizing about that level of automation, you realize that writing least privilege IAM Policies, seemingly
out of charity, will jeopardize your ability to finish your code in time to meet project deadlines.

• You use Managed Policies (because hey, why not) or you eyeball the names of the API calls and use wildcards
instead so you can move on with your life.

Such a process is not ideal for security or for Infrastructure as Code developers. We need to make it easier to write
IAM Policies securely and abstract the complexity of writing least-privilege IAM policies. That’s why I made this
tool.

1.2 Authoring Secure IAM Policies

Policy Sentry’s flagship feature is that it can create IAM policies based on resource ARNs and access levels. Our
CRUD functionality takes the opinionated approach that IAC developers shouldn’t have to understand the complexities

3

https://github.com/salesforce/policy_sentry
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html


policy𝑠𝑒𝑛𝑡𝑟𝑦

of AWS IAM - we should abstract the complexity for them. In fact, developers should just be able to say. . .

• “I need Read/Write/List access to arn:aws:s3:::example-org-sbx-vmimport”

• “I need Permissions Management access to arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret”

• “I need Tagging access to arn:aws:ssm:us-east-1:123456789012:parameter/test”

. . . and our automation should create policies that correspond to those access levels.

How do we accomplish this? Well, Policy Sentry leverages the AWS documentation on Actions, Resources, and Con-
dition Keys documentation to look up the actions, access levels, and resource types, and generates policies according
to the ARNs and access levels. Consider the table snippet below:

Actions Access Level Resource Types
ssm:GetParameter Read parameter
ssm:DescribeParameters List parameter
ssm:PutParameter Write parameter
secretsmanager:PutResourcePolicy Permissions management secret
secretsmanager:TagResource Tagging secret

Policy Sentry aggregates all of that documentation into a single database and uses that database to generate policies
according to actions, resources, and access levels.

To get started, install Policy Sentry:

pip3 install --user policy_sentry

Then initialize the IAM database:

policy_sentry initialize

To generate a policy according to resources and access levels, start by creating a template with this command so you
can just fill out the ARNs:

policy_sentry create-template --name myRole --output-file crud.yml --template-type
→˓crud

It will generate a file like this:

mode: crud
name: myRole
description: '' # Insert description
role_arn: '' # Insert the ARN of the role that will use this
read:
- '' # Insert ARNs for Read access
write:
- '' # Insert ARNs...
list:
- '' # Insert ARNs...
tagging:
- '' # Insert ARNs...
permissions-management:
- '' # Insert ARNs...

Then just fill it out:

4 Chapter 1. Overview



policy𝑠𝑒𝑛𝑡𝑟𝑦

mode: crud
name: myRole
description: 'Justification for privileges'
role_arn: 'arn:aws:iam::123456789102:role/myRole'
read:
- 'arn:aws:ssm:us-east-1:123456789012:parameter/myparameter'
write:
- 'arn:aws:ssm:us-east-1:123456789012:parameter/myparameter'
list:
- 'arn:aws:ssm:us-east-1:123456789012:parameter/myparameter'
tagging:
- 'arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret'
permissions-management:
- 'arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret'

Then run this command:

policy_sentry write-policy --input-file crud.yml

It will generate these results:

{
"Version": "2012-10-17",
"Statement": [

{
"Sid": "SsmReadParameter",
"Effect": "Allow",
"Action": [

"ssm:getparameter",
"ssm:getparameterhistory",
"ssm:getparameters",
"ssm:getparametersbypath",
"ssm:listtagsforresource"

],
"Resource": [

"arn:aws:ssm:us-east-1:123456789012:parameter/myparameter"
]

},
{

"Sid": "SsmWriteParameter",
"Effect": "Allow",
"Action": [

"ssm:deleteparameter",
"ssm:deleteparameters",
"ssm:putparameter",
"ssm:labelparameterversion"

],
"Resource": [

"arn:aws:ssm:us-east-1:123456789012:parameter/myparameter"
]

},
{

"Sid": "SecretsmanagerPermissionsmanagementSecret",
"Effect": "Allow",
"Action": [

"secretsmanager:deleteresourcepolicy",
"secretsmanager:putresourcepolicy"

(continues on next page)

1.2. Authoring Secure IAM Policies 5



policy𝑠𝑒𝑛𝑡𝑟𝑦

(continued from previous page)

],
"Resource": [

"arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret"
]

},
{

"Sid": "SecretsmanagerTaggingSecret",
"Effect": "Allow",
"Action": [

"secretsmanager:tagresource",
"secretsmanager:untagresource"

],
"Resource": [

"arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret"
]

}
]

}

Notice how the policy above recognizes the ARNs that the user supplies, along with the requested access level. For
instance, the SID “SecretsmanagerTaggingSecret” contains Tagging actions that are assigned to the secret resource
type only.

This rapidly speeds up the time to develop IAM policies, and ensures that all policies created limit access to exactly
what your role needs access to. This way, developers only have to determine the resources that they need to access,
and we abstract the complexity of IAM policies away from their development processes.

1.3 Installation

• Policy Sentry is available via pip. To install, run:

pip3 install --user policy_sentry

1.3.1 Shell completion

To enable Bash completion, put this in your .bashrc:

eval "$(_POLICY_SENTRY_COMPLETE=source policy_sentry)"

To enable ZSH completion, put this in your .zshrc:

eval "$(_POLICY_SENTRY_COMPLETE=source_zsh policy_sentry)"

1.4 Usage

• create-template: Creates the YML file templates for use in the write-policy command types.

• write-policy: Leverage a YAML file to write policies for you

– Option 1: Specify CRUD levels (Read, Write, List, Tagging, or Permissions management) and the ARN
of the resource. It will write this for you. See the documentation on CRUD mode

6 Chapter 1. Overview

https://policy-sentry.readthedocs.io/en/latest/user-guide/write-policy.html#crud-mode-arns-and-access-levels


policy𝑠𝑒𝑛𝑡𝑟𝑦

– Option 2: Specify a list of actions. It will write the IAM Policy for you, but you will have to fill in the
ARNs. See the documentation on Action Mode.

• write-policy-dir: This can be helpful in the Terraform use case. For more information, see the wiki.

• query: Query the IAM database tables. This can help when filling out the Policy Sentry templates, or just
querying the database for quick knowledge. - Option 1: Query the Actions Table (action-table) - Option
2: Query the ARNs Table (arn-table) - Option 3: Query the Conditions Table (condition-table)

• initialize: (Optional) Create a SQLite database that contains all of the services available through the
Actions, Resources, and Condition Keys documentation. See the documentation.

1.5 Author Information

Author:

• Kinnaird McQuade

– Twitter

– Keybase

– LinkedIn

Contributors:

• Matt Jones

– Twitter

– Keybase

– LinkedIn

1.5. Author Information 7

https://policy-sentry.readthedocs.io/en/latest/user-guide/write-policy.html#actions-mode-lists-of-iam-actions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html
https://policy-sentry.readthedocs.io/en/latest/user-guide/initialize.html
https://github.com/kmcquade
https://twitter.com/kmcquade3
https://keybase.io/kmcquade
https://www.linkedin.com/in/kinnairdmcquade/
https://github.com/mattyjones
https://twitter.com/CaffeinatedEng
https://keybase.io/urlugal
https://www.linkedin.com/in/mattyjones/


policy𝑠𝑒𝑛𝑡𝑟𝑦

8 Chapter 1. Overview



CHAPTER 2

Comparison to other tools

2.1 Policy Revocation Tools

2.1.1 Repokid

RepoKid is a popular tool that was developed by Netflix, and is one of the more mature and battle-tested AWS IAM
open source projects. It leverages AWS Access Advisor, which informs you how many AWS services your IAM
Principal has access to, and how many of those services it has used in the last X amount of days or months. If you
haven’t used a service within the last 30 days, it “repos” your policy, and strips it of the privileges it doesn’t use. It has
some advanced features to allow for whitelisting roles and overall is a great tool.

One shortcoming is that AWS IAM Access Advisor only provides details at the service level (ex: S3-wide, or EC2-
wide) and not down to the IAM Action level, so the revised policy is not very granular. However, RepoKid plays a
unique role in the IAM ecosystem right now in that there are not any open source tools that provide similar function-
ality. For that reason, it is best to view RepoKid and Policy Sentry as complimentary.

Travis McPeak summarized the potential dynamic between Policy Sentry and RepoKid very well on Clint Gliber’s
blog:

Policy Sentry aims to make it easy to create initial least privilege policies and then Repokid takes away
unused permissions.

Creating policies is difficult, so Policy Sentry creates policies based on top level goals and target resources,
and then on the backend substitutes the applicable action list to generate the policy. This is very helpful
for anybody creating the first version of a policy.

To help with simplicity these permissions will be assigned somewhat coarsely. So Repokid can use data
to remove the specific actions that were granted and aren’t required. Also Repokid will repo down unused
permissions once an application stops being used or scope changes.

9

https://programanalys.is/blog/tldr-sec-010-cloudflare-on-security-iam-least-priv-xss-in-firefox-ui/#policy_sentry---iam-least-privilege-policy-generator
https://programanalys.is/blog/tldr-sec-010-cloudflare-on-security-iam-least-priv-xss-in-firefox-ui/#policy_sentry---iam-least-privilege-policy-generator


policy𝑠𝑒𝑛𝑡𝑟𝑦

2.2 AWS Tools

2.2.1 AWS Console - Visual Policy Editor

• AWS IAM Visual Policy Editor in the AWS Console

This policy generator is great in general and you should use it if you’re getting used to writing IAM policies.

It’s very similar to policy_sentry - you are able to bulk select according to access levels.

However, there are a number of downsides:

• Missing access level type: It does not specifically flag “Permissions management” access level

• No override capabilities for inaccurate Access Levels: Note how the ssm:PutParameter action is listed
as “Tagging”. This is inaccurate; it should be “Write”. Policy_sentry allows you to override inaccurate access
levels, whereas the Visual Policy Editor has had inaccurate Access levels for the last several years without any
fixes.

• Not automated: Policy Sentry is, by design, meant for automated policy generation, whereas the Visual Policy
Editor is meant to be manual.

• Console Access: It also requires access to the AWS Console.

• Extensibility: It’s open source and Pull Requests are welcome! With policy_sentry, we get more control.

On the positive side, it does walk you through creating policies with IAM Condition keys. However, we believe
that policy_sentry’s approach, where we always have policies restricted to the least amount of resources - provides a
greater benefit to the end user. Furthermore, we plan on supporting condition keys at some point in the future.

2.2.2 AWS Policy Generator (static website)

• AWS Policy Generator - static website

AWS Policy Generator is a great tool; it supports IAM policies, as well as multiple types of resource-based policies
(SQS Queue policy, S3 bucket policy, SNS Topic Policy, and VPC Endpoint Policy).

Loose ARN formatting: The regex expressions that it uses per-service does not require that actual valid resource
ARNs are met - just that they meet the Regex requirement, which is uniform per-service. It just isn’t as accurate or up
to date as the actual IAM policy generation through the AWS Console

Missing actions: To determine the list of actions, it relies on a file titled policies.js, which contains a list of IAM
Actions. However, this file is not as well maintained as the Actions, Resources, and Condition Keys tables. For
example, it does not have these actions:

10 Chapter 2. Comparison to other tools

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-start
../images/3-SSM-visual-editor.png
https://awspolicygen.s3.amazonaws.com/policygen.html
https://awspolicygen.s3.amazonaws.com/js/policies.js
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html


policy𝑠𝑒𝑛𝑡𝑟𝑦

a4b:describe*
appstream:get*
cloudformation:preview*
codestar:verify*
ds:check*
health:get*
health:list*
kinesisanalytics:get*
lightsail:list*
mobilehub:validate*
resource-groups:describe*

2.3 Log-based Policy Generators

2.3.1 CloudTracker

• CloudTracker

Policy Sentry is somewhat similar to CloudTracker. CloudTracker queries CloudTrail logs using Amazon Athena and
attempts to “guess” the matching between CloudTrail actions and IAM actions, then generates a policy. Given that
there is not a 1-to-1 mapping between the names of Actions listed in CloudTrail log entries and the names AWS IAM
Actions, the results are not always accurate. It is a good place to start, but the generated policies all contain Resources:
“*”, so it is up to the user to restrict those IAM actions to only the necessary resources.

2.3.2 Trailscraper

• Trailscraper

Trailscraper does automated policy generation from CloudTrail logs, but there are some major limitations:

1. The generated policies have Resources set to *‘, not to a specific resource ARN

2. It downloads all of the CloudTrail logs. This takes a while.

• Cloudtracker (https://github.com/duo-labs/cloudtracker) uses Amazon Athena, which is more efficient. In
the future, I’d like to see a combined approach between all three of these tools to generate IAM policies
based on Cloudtrail logs. 3. It is accurate to the point where there is a 1-to-1 mapping with the IAM
actions vs CloudTrail logs. As I mentioned in other comments, since not every IAM Action is logged in
CloudTrail and not every CloudTrail action matches IAM Actions, the results are not always accurate.

2.4 Other Infrastructure as Code Tools

2.4.1 aws-iam-generator

• aws-iam-generator

aws-iam-generator still requires you to write the actual policy templates from scratch, and then they allow you to
re-use those policy templates.

Consider the JSON under this area of their README.

It’s essentially a method for managing their policies as code - but it doesn’t make those policies restricted to certain
resources, unless you configure it that way. Using policy_sentry --write-policy, you have to supply a file

2.3. Log-based Policy Generators 11

https://github.com/duo-labs/cloudtracker
https://github.com/flosell/trailscraper/
https://github.com/duo-labs/cloudtracker
https://github.com/awslabs/aws-iam-generator
https://github.com/awslabs/aws-iam-generator#managed-policies-derived-from-a-jinja2-template


policy𝑠𝑒𝑛𝑡𝑟𝑦

with resource ARNs, and it will write the policy for you, rather than supplying a policy file, and hoping the ARNs fit
that use case.

2.4.2 Terraform

The rationale described above also generally applies to Terraform, in that it still requires you to write the actual policy
templates from scratch, and then you can re-use those policy templates. However, you still need to make those policies
secure by default.

12 Chapter 2. Comparison to other tools



CHAPTER 3

Installation

• policy_sentry is available via pip (Python 3 only). To install, run:

pip3 install --user policy_sentry

3.1 Shell completion

To enable Bash completion, put this in your .bashrc:

eval "$(_POLICY_SENTRY_COMPLETE=source policy_sentry)"

To enable ZSH completion, put this in your .zshrc:

eval "$(_POLICY_SENTRY_COMPLETE=source_zsh policy_sentry)"

13



policy𝑠𝑒𝑛𝑡𝑟𝑦

14 Chapter 3. Installation



CHAPTER 4

Command cheat sheet

4.1 Commands

• create-template: Creates the YML file templates for use in the write-policy command types.

• write-policy: Leverage a YAML file to write policies for you

– Option 1: CRUD Mode. Specify CRUD levels (Read, Write, List, Tagging, or Permissions management)
and the ARN of the resource. It will write this for you. See the documentation for more details.

– Option 2: Actions Mode. Specify a list of actions. It will write the IAM Policy for you, but you will have
to fill in the ARNs. See the documentation for more details.

• write-policy-dir: This can be helpful in the Terraform use case. For more information, see the wiki.

• query: Query the IAM database tables. This can help when filling out the Policy Sentry templates, or just
querying the database for quick knowledge.

– Option 1: Query the Actions Table (--table action)

– Option 2: Query the ARNs Table (--table arn)

– Option 3: Query the Conditions Table (--table condition)

• initialize: (Optional) Create a SQLite database that contains all of the services available through the
Actions, Resources, and Condition Keys documentation. See the documentation.

4.2 Policy Writing Commands

# Create templates first!!! This way you can just paste the values you need rather
→˓than remembering the YAML format
# CRUD mode
policy_sentry create-template --name myRole --output-file tmp.yml --template-type crud
# Actions mode
policy_sentry create-template --name myRole --output-file tmp.yml --template-type
→˓actions (continues on next page)

15

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html
./initialize.html


policy𝑠𝑒𝑛𝑡𝑟𝑦

(continued from previous page)

# Get a list of actions that do not support resource constraints
policy_sentry query action-table --service s3 --wildcard-only --fmt yaml

# Get a list of actions at the "Write" level in S3 that do not support resource
→˓constraints
policy_sentry query action-table --service s3 --access-level write --wildcard-only --
→˓fmt yaml

# Initialize the policy_sentry config folder and create the IAM database tables.
policy_sentry initialize

# Write policy based on resource-specific access levels
policy_sentry write-policy --input-file examples/yml/crud.yml

# Write policy_sentry YML files based on resource-specific access levels on a
→˓directory basis
policy_sentry write-policy-dir --input-dir examples/input-dir --output-dir examples/
→˓output-dir

# Write policy based on a list of actions
policy_sentry write-policy --input-file examples/yml/actions.yml

4.3 IAM Database Query Commands

• Query the Action table:

# Get a list of all IAM actions across ALL services that have "Permissions management
→˓" access
policy_sentry query action-table --service all --access-level permissions-management

# Get a list of all IAM Actions available to the RAM service
policy_sentry query action-table --service ram

# Get details about the `ram:TagResource` IAM Action
policy_sentry query action-table --service ram --name tagresource

# Get a list of all IAM actions under the RAM service that have the Permissions
→˓management access level.
policy_sentry query action-table --service ram --access-level permissions-management

# Get a list of all IAM actions under the SES service that support the
→˓`ses:FeedbackAddress` condition key.
policy_sentry query action-table --service ses --condition ses:FeedbackAddress

• Query the ARN table:

# Get a list of all RAW ARN formats available through the SSM service.
policy_sentry query arn-table --service ssm

# Get the raw ARN format for the `cloud9` ARN with the short name `environment`
policy_sentry query arn-table --service cloud9 --name environment

(continues on next page)

16 Chapter 4. Command cheat sheet



policy𝑠𝑒𝑛𝑡𝑟𝑦

(continued from previous page)

# Get key/value pairs of all RAW ARN formats plus their short names
policy_sentry query arn-table --service cloud9 --list-arn-types

• Query the Condition Keys table:

# Get a list of all condition keys available to the Cloud9 service
policy_sentry query condition-table --service cloud9
# Get details on the condition key titled `cloud9:Permissions`
policy_sentry query condition-table --service cloud9 --name cloud9:Permissions

4.4 Initialization (Optional)

# Initialize the policy_sentry config folder and create the IAM database tables.
policy_sentry initialize

# Fetch the most recent version of the AWS documentation so you can experiment with
→˓new services.
policy_sentry initialize --fetch

# Override the Access Levels by specifying your own Access Levels (example:,
→˓correcting Permissions management levels)
policy_sentry initialize --access-level-overrides-file ~/.policy_sentry/access-level-
→˓overrides.yml
policy_sentry initialize --access-level-overrides-file ~/.policy_sentry/overrides-
→˓resource-policies.yml

4.4. Initialization (Optional) 17



policy𝑠𝑒𝑛𝑡𝑟𝑦

18 Chapter 4. Command cheat sheet



CHAPTER 5

Writing IAM Policies

5.1 CRUD Mode

• TLDR: Building IAM policies with resource constraints and access levels.

This is the flagship feature of this tool. You can just specify the CRUD levels (Read, Write, List, Tagging, or Permis-
sions management) for each action in a YAML File. The policy will be generated for you. You might need to fiddle
with the results for your use in Terraform, but it significantly reduces the level of effort to build least privilege into
your policies.

5.1.1 Command options

• --input-file: YAML file containing the CRUD levels + Resource ARNs. Required.

• --minimize: Whether or not to minimize the resulting statement with safe usage of wildcards to reduce
policy length. Set this to the character length you want. This can be extended for readability. I suggest setting it
to 0.

• --quiet: Set the logging level to WARNING instead of INFO.

Example:

policy_sentry write-policy --input-file examples/crud.yml

5.1.2 Instructions

• To generate a policy according to resources and access levels, start by creating a template with this command so
you can just fill out the ARNs:

policy_sentry create-template --name myRole --output-file crud.yml --template-type
→˓crud

• It will generate a file like this:

19



policy𝑠𝑒𝑛𝑡𝑟𝑦

mode: crud
name: myRole
description: ''
role_arn: ''
# Insert ARNs below
read:
- ''
write:
- ''
list:
- ''
tagging:
- ''
permissions-management:
- ''
# Provide a list of IAM actions that cannot be restricted to ARNs
wildcard:
- ''

• Then just fill it out:

mode: crud
name: myRole
description: 'Justification for privileges'
role_arn: 'arn:aws:iam::123456789102:role/myRole'
read:
- 'arn:aws:ssm:us-east-1:123456789012:parameter/myparameter'
write:
- 'arn:aws:ssm:us-east-1:123456789012:parameter/myparameter'
list:
- 'arn:aws:ssm:us-east-1:123456789012:parameter/myparameter'
tagging:
- 'arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret'
permissions-management:
- 'arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret'

• Run the command:

policy_sentry write-policy --input-file examples/crud.yml

• It will generate an IAM Policy containing an IAM policy with the actions restricted to the ARNs specified above.

• The resulting policy (without the --minimize command) will look like this:

{
"Version": "2012-10-17",
"Statement": [

{
"Sid": "SsmReadParameter",
"Effect": "Allow",
"Action": [

"ssm:getparameter",
"ssm:getparameterhistory",
"ssm:getparameters",
"ssm:getparametersbypath",
"ssm:listtagsforresource"

],
"Resource": [

(continues on next page)

20 Chapter 5. Writing IAM Policies



policy𝑠𝑒𝑛𝑡𝑟𝑦

(continued from previous page)

"arn:aws:ssm:us-east-1:123456789012:parameter/myparameter"
]

},
{

"Sid": "SsmWriteParameter",
"Effect": "Allow",
"Action": [

"ssm:deleteparameter",
"ssm:deleteparameters",
"ssm:putparameter",
"ssm:labelparameterversion"

],
"Resource": [

"arn:aws:ssm:us-east-1:123456789012:parameter/myparameter"
]

},
{

"Sid": "SecretsmanagerPermissionsmanagementSecret",
"Effect": "Allow",
"Action": [

"secretsmanager:deleteresourcepolicy",
"secretsmanager:putresourcepolicy"

],
"Resource": [

"arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret"
]

},
{

"Sid": "SecretsmanagerTaggingSecret",
"Effect": "Allow",
"Action": [

"secretsmanager:tagresource",
"secretsmanager:untagresource"

],
"Resource": [

"arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret"
]

}
]

}

5.2 Actions Mode

• TLDR: Supply a list of actions in a YAML file and generate the policy accordingly.

5.2.1 Command options

• --input-file: YAML file containing the list of actions

• --minimize: Whether or not to minimize the resulting statement with safe usage of wildcards to reduce
policy length. Set this to the character lengh you want - for example, 4

• --quiet: Set the logging level to WARNING instead of INFO.

Example:

5.2. Actions Mode 21



policy𝑠𝑒𝑛𝑡𝑟𝑦

policy_sentry write-policy --input-file examples/actions.yml

5.2.2 Instructions

• If you already know the IAM actions, you can just run this command to create a template to fill out:

policy_sentry create-template --name myRole --output-file actions.yml --template-type
→˓actions

• It will generate a file with contents like this:

mode: actions
name: myRole
description: '' # Insert value here
role_arn: '' # Insert value here
actions:
- '' # Fill in your IAM actions here

• Create a yaml file with the following contents:

mode: actions
name: 'RoleNameWithActions'
description: 'Justification for privileges' # for auditability
role_arn: 'arn:aws:iam::123456789102:role/myRole' # for auditability
actions:
- kms:CreateGrant
- kms:CreateCustomKeyStore
- ec2:AuthorizeSecurityGroupEgress
- ec2:AuthorizeSecurityGroupIngress

• Then run this command:

policy_sentry write-policy --input-file actions.yml

• The output will look like this:

{
"Version": "2012-10-17",
"Statement": [

{
"Sid": "KmsPermissionsmanagementKey",
"Effect": "Allow",
"Action": [

"kms:creategrant"
],
"Resource": [

"arn:aws:kms:${Region}:${Account}:key/${KeyId}"
]

},
{

"Sid": "Ec2WriteSecuritygroup",
"Effect": "Allow",
"Action": [

"ec2:authorizesecuritygroupegress",
"ec2:authorizesecuritygroupingress"

(continues on next page)

22 Chapter 5. Writing IAM Policies



policy𝑠𝑒𝑛𝑡𝑟𝑦

(continued from previous page)

],
"Resource": [

"arn:aws:ec2:${Region}:${Account}:security-group/${SecurityGroupId}"
]

},
{

"Sid": "MultMultNone",
"Effect": "Allow",
"Action": [

"kms:createcustomkeystore",
"cloudhsm:describeclusters"

],
"Resource": [

"*"
]

}
]

}

5.3 Folder Mode

• TLDR: Write Multiple Policies from CRUD mode templates

This command provides the same function as write-policy’s CRUD mode, but it can execute all the CRUD mode files
in a folder. This is particularly useful in the Terraform use case, where the Terraform module can export a number of
Policy Sentry template files into a folder, which can then be consumed using this command.

See the Terraform demo for more details.

Usage: policy_sentry write-policy-dir [OPTIONS]

Options:
--input-dir TEXT Relative path to Input directory that contains policy_sentry .

→˓yml files (CRUD mode only) [required]
--output-dir TEXT Relative path to directory to store AWS JSON policies [required]
--minimize INTEGER Minimize the resulting statement with *safe* usage of wildcards

→˓to reduce policy length. Set this to the character length you want - for example, 4
--quiet Set the logging level to WARNING instead of INFO.
--help Show this message and exit.

5.3. Folder Mode 23



policy𝑠𝑒𝑛𝑡𝑟𝑦

24 Chapter 5. Writing IAM Policies



CHAPTER 6

Querying the IAM Policy Database

Policy Sentry relies on a SQLite database, generated at initialize time, which contains all of the services available
through the Actions, Resources, and Condition Keys documentation. The HTML files from that AWS documentation
is scraped and stored in the SQLite database, which is then stored in $HOME/.policy_sentry/aws.sqlite3.

Policy Sentry supports querying that database through the CLI. This can help with writing policies and generally
knowing what values to supply in your policies.

6.1 Commands

• Query the Action table:

# NOTE: Use --fmt yaml or --fmt json to change the output format. Defaults to json
→˓for querying

# Get a list of actions that do not support resource constraints
policy_sentry query action-table --service s3 --wildcard-only --fmt yaml

# Get a list of actions at the "Read" level in S3 that do not support resource
→˓constraints
policy_sentry query action-table --service s3 --access-level read --wildcard-only --
→˓fmt yaml

# Get a list of all IAM Actions available to the RAM service
policy_sentry query action-table --service ram

# Get details about the `ram:TagResource` IAM Action
policy_sentry query action-table --service ram --name tagresource

# Get a list of all IAM actions under the RAM service that have the Permissions
→˓management access level.
policy_sentry query action-table --service ram --access-level permissions-management

(continues on next page)

25

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html


policy𝑠𝑒𝑛𝑡𝑟𝑦

(continued from previous page)

# Get a list of all IAM actions under the SES service that support the
→˓`ses:FeedbackAddress` condition key.
policy_sentry query action-table --service ses --condition ses:FeedbackAddress

• Query the ARN table:

# Get a list of all RAW ARN formats available through the SSM service.
policy_sentry query arn-table --service ssm

# Get the raw ARN format for the `cloud9` ARN with the short name `environment`
policy_sentry query arn-table --service cloud9 --name environment

# Get key/value pairs of all RAW ARN formats plus their short names
policy_sentry query arn-table --service cloud9 --list-arn-types

• Query the Condition Keys table:

# Get a list of all condition keys available to the Cloud9 service
policy_sentry query condition-table --service cloud9

# Get details on the condition key titled `cloud9:Permissions`
policy_sentry query condition-table --service cloud9 --name cloud9:Permissions

6.2 Options

• action-table

Usage: policy_sentry query action-table [OPTIONS]

Options:
--service TEXT Filter according to AWS service. [required]
--name TEXT The name of IAM Action. For example, if the

action is "iam:ListUsers", supply
"ListUsers" here.

--access-level [read|write|list|tagging|permissions-management]
If action table is chosen, you can use this
to filter according to CRUD levels.
Acceptable values are read, write, list,
tagging, permissions-management

--condition TEXT If action table is chosen, you can supply a
condition key to show a list of all IAM
actions that support the condition key.

--wildcard-only If action table is chosen, show the IAM
actions that only support wildcard resources
- i.e., cannot support ARNs in the resource
block.

--fmt [yaml|json] Format output as YAML or JSON. Defaults to
"yaml"

--quiet Set the logging level to WARNING instead of INFO.
--help Show this message and exit.

• arn-table

26 Chapter 6. Querying the IAM Policy Database



policy𝑠𝑒𝑛𝑡𝑟𝑦

Usage: policy_sentry query arn-table [OPTIONS]

Query the ARN Table from the Policy Sentry database

Options:
--service TEXT Filter according to AWS service. [required]
--name TEXT The short name of the resource ARN type. For example,

`bucket` under service `s3`.
--list-arn-types Show the short names of ARN Types. If empty, this will

show RAW ARNs only.
--fmt [yaml|json] Format output as YAML or JSON. Defaults to "yaml"
--quiet Set the logging level to WARNING instead of INFO.
--help Show this message and exit.

• condition-table

Usage: policy_sentry query condition-table [OPTIONS]

Query the condition keys table from the Policy Sentry database

Options:
--name TEXT Get details on a specific condition key. Leave this blank

to get a list of all condition keys available to the
service.

--service TEXT Filter according to AWS service. [required]
--fmt [yaml|json] Format output as YAML or JSON. Defaults to "yaml"
--quiet Set the logging level to WARNING instead of INFO.
--help Show this message and exit.

6.2. Options 27



policy𝑠𝑒𝑛𝑡𝑟𝑦

28 Chapter 6. Querying the IAM Policy Database



CHAPTER 7

Docker

If you prefer using Docker instead of installing the script with Python, we support that as well.

Use this to build the docker image:

docker build -t kmcquade/policy_sentry .

Use this to run some basic commands:

# Basic commands with no arguments
docker run -i --rm kmcquade/policy_sentry:latest "--help"
docker run -i --rm kmcquade/policy_sentry:latest "query"

# Query the database
docker run -i --rm kmcquade/policy_sentry:latest "query action-table --service all --
→˓access-level permissions-management"

The write-policy command also supports passing in the YML config via STDIN. Try it out here:

# Write policies by passing in the config via STDIN
cat examples/yml/crud.yml | docker run -i --rm kmcquade/policy_sentry:latest "write-
→˓policy"
cat examples/yml/actions.yml | docker run -i --rm kmcquade/policy_sentry:latest
→˓"write-policy"

29



policy𝑠𝑒𝑛𝑡𝑟𝑦

30 Chapter 7. Docker



CHAPTER 8

Initialization (Optional)

initialize: This will create a SQLite database that contains all of the services available through the Actions, Resources,
and Condition Keys documentation.

Note: This step is now optional. Typical use cases for running the initialize command are: * If you want to run –fetch
and build the latest database from the AWS Docs. This is good if you want to try out the latest cool services. * If you
want to verify the database contents on your own. * If you want to build the SQLite database from the raw HTML
files, rather than copying it from the package.

The database is stored in $HOME/.policy_sentry/aws.sqlite3.

The database is generated based on the HTML files stored in the policy_sentry/shared/data/docs/ direc-
tory.

8.1 Options

• --access-level-overrides-file (Optional): Path to your own custom access level overrides file,
used to override the Access Levels per action provided by AWS docs. The default one is here.

• --fetch (Optional): Specify this flag to fetch the HTML Docs directly from the AWS website. This will be
helpful if the docs in the Git repository are behind the live docs and you need to use the latest version of the
docs right now.

• --build (Optional) Build the SQLite database from the HTML files rather than copying the SQLite database
file from the python package. Defaults to false.

8.2 Usage

# Initialize the database, using the existing Access Level Overrides file
policy_sentry initialize

# Fetch the most recent version of the AWS documentation so you can experiment with
→˓new services. (continues on next page)

31

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html
https://github.com/salesforce/policy_sentry/blob/master/policy_sentry/shared/data/access-level-overrides.yml


policy𝑠𝑒𝑛𝑡𝑟𝑦

(continued from previous page)

# This can be helpful in case the AWS HTML files in the Python package are outdated,
→˓even if it is a week old
policy_sentry initialize --fetch

# Build the database file from the HTML files rather than using the bundled binary.
policy_sentry initialize --build

# Initialize the database with a custom Access Level Overrides file

policy_sentry initialize --access-level-overrides-file ~/.policy_sentry/access-level-
→˓overrides.yml
policy_sentry initialize --access-level-overrides-file ~/.policy_sentry/overrides-
→˓resource-policies.yml

8.3 Skipping Initialization

When using Policy Sentry manually, you have to build a local database file with the initialize function.

However, if you are developing your own Python code and you want to import Policy Sentry as a third party package,
you can skip the initialization and leverage the local database file that is bundled with the Python package itself.

This is especially useful for developers who wish to leverage Policy Sentry’s capabilities that require the use of the
IAM database (such as querying the IAM database table). This way, you don’t have to initialize the database and can
just query it immediately.

32 Chapter 8. Initialization (Optional)



CHAPTER 9

Terraform Demo

Please download the demo code here to follow along.

9.1 Command options

Usage: policy_sentry write-policy-dir [OPTIONS]

write_policy, but this time with an input directory of YML/YAML files, and
an output directory for all the JSON files

Options:
--input-dir TEXT Relative path to Input directory that contains policy_sentry .

→˓yml files (CRUD mode only) [required]
--output-dir TEXT Relative path to directory to store AWS JSON policies [required]
--minimize INTEGER Minimize the resulting statement with *safe* usage of wildcards

→˓to reduce policy length. Set this to the character length you want - for example, 4
--help Show this message and exit.

9.2 Prerequisites

This requires:

• Terraform v0.12.8

• AWS credentials; must be authenticated

9.3 Tutorial

• Install policy_sentry

33

https://github.com/salesforce/policy_sentry/tree/master/examples/terraform


policy𝑠𝑒𝑛𝑡𝑟𝑦

pip3 install policy_sentry

• Initialize policy_sentry

policy_sentry initialize

• Execute the first Terraform module:

cd environments/standard-resources
tfjson install 0.12.8
terraform init
terraform plan
terraform apply -auto-approve

This will create a YML file to be used by policy_sentry in the environments/iam-resources/files/ directory titled
example-role-randomid.yml.

• Write the policy using policy_sentry:

cd ../iam-resources
policy_sentry write-policy-dir --input-dir files --output-dir files

This will create a JSON file to be consumed by Terraform’s aws_iam_policy resource to create an IAM policy.

• Now create the policies with Terraform:

terraform init
terraform plan
terraform apply -auto-approve

• Don’t forget to cleanup

terraform destroy -auto-approve
cd ../standard-resources
terraform destroy -auto-approve

34 Chapter 9. Terraform Demo

https://github.com/salesforce/policy_sentry/tree/master/examples/terraform/environments/iam-resources/files
https://github.com/salesforce/policy_sentry/blob/master/examples/terraform/environments/iam-resources/files/example-role-jpwdp.yml.example


CHAPTER 10

Terraform Modules

10.1 1: Install policy_sentry

• Install policy_sentry

pip3 install policy_sentry

• Initialize policy_sentry

policy_sentry initialize

10.2 2: Generate the policy_sentry YAML File

Create a file with the following in some-directory:

module "policy_sentry_yml" {
source = "git::https://github.com/salesforce/policy_sentry.git//examples/

→˓terraform/modules/generate-policy_sentry-yml"
role_name = ""
role_description = ""
role_arn = ""

list_access_level = []
permissions_management_access_level = []
read_access_level = []
tagging_access_level = []
write_access_level = []

yml_file_destination_path = "../other-directory/files"
}

35



policy𝑠𝑒𝑛𝑡𝑟𝑦

Make sure you fill out the actual directory path properly. Note that yml_file_destination_path should point
to the directory mentioned in Step 3.

10.3 3: Run policy_sentry and specify proper target directory

• Enter the directory you specified under yml_file_destination_path above.

• Run the following:

policy_sentry write-policy-dir --input-dir files --output-dir files

10.4 4: Create the IAM Policies using JSON files from directory

Then from other-directory:

module "policies" {
source = "git::https://github.com/salesforce/policy_sentry.git//examples/terraform/

→˓modules/generate-iam-policies"
relative_path_to_json_policy_files = "files"

}

36 Chapter 10. Terraform Modules



CHAPTER 11

Contributing

Want to contribute back to Policy Sentry? This page describes the general development flow, our philosophy, the test
suite, and issue tracking.

Impostor Syndrome Disclaimer

Before we get into the details: We want your help. No, really.

There may be a little voice inside your head that is telling you that you’re not ready to be an open source contributor;
that your skills aren’t nearly good enough to contribute. What could you possibly offer a project like this one?

We assure you – the little voice in your head is wrong. If you can write code at all, you can contribute code to
open source. Contributing to open source projects is a fantastic way to advance one’s coding skills. Writing perfect
code isn’t the measure of a good developer (that would disqualify all of us!); it’s trying to create something, making
mistakes, and learning from those mistakes. That’s how we all improve.

We’ve provided some clear Contribution Guidelines that you can read here. The guidelines outline the process that
you’ll need to follow to get a patch merged. By making expectations and process explicit, we hope it will make it
easier for you to contribute.

And you don’t just have to write code. You can help out by writing documentation, tests, or even by giving feedback
about this work. (And yes, that includes giving feedback about the contribution guidelines.)

(Adrienne Friend came up with this disclaimer language.)

11.1 Contributing to Documentation

If you’re looking to help document Policy Sentry, your first step is to get set up with Sphinx, our documentation tool.
First you will want to make sure you have a few things on your local system:

• python-dev (if you’re on OS X, you already have this)

• pip

• pipenv

Once you’ve got all that, the rest is simple:

37

https://github.com/adriennefriend/imposter-syndrome-disclaimer


policy𝑠𝑒𝑛𝑡𝑟𝑦

# If you have a fork, you'll want to clone it instead
git clone git@github.com:salesforce/policy_sentry.git

# Set up the Pipenv
pipenv install --skip-lock
pipenv shell

# Enter the docs directory and compile
cd docs/
make html

# View the file titled docs/_build/html/index.html in your browser

11.1.1 Building Documentation

Inside the docs directory, you can run make to build the documentation. See make help for available options and
the Sphinx Documentation for more information.

11.1.2 Docstrings

The comments under each Python Module are Docstrings. We use those to generate our documen-
tation. See more information here: https://sphinx-rtd-tutorial.readthedocs.io/en/latest/build-the-docs.html#
generating-documentation-from-docstrings.

Use the Google style for Docstrings, as shown here: http://www.sphinx-doc.org/en/master/usage/extensions/napoleon.
html#google-vs-numpy

::

def func(arg1, arg2): “”“Summary line.

Extended description of function.

Args: arg1 (int): Description of arg1 arg2 (str): Description of arg2

Returns: bool: Description of return value

“”” return True

11.2 IAM Database

Policy Sentry leverages HTML files from the Actions, Resources, and Condition Keys page AWS documentation to
build the IAM database.

• These HTML files are included as part of the PyPi package

• The database itself is

This design choice was made for a few reasons:

1. Don’t break because of AWS: The automation must not break if the AWS website is down, or if AWS drasti-
cally changes the documentation.

2. Replicability: Two git clones that build the SQLite database should always have the same results

3. Easy to review: The repository itself should contain easy-to-understand and easy-to-view documentation, which
the user can replicate, to verify with the human eye that no malicious changes have been made.

38 Chapter 11. Contributing

http://sphinx-doc.org/contents.html
https://sphinx-rtd-tutorial.readthedocs.io/en/latest/build-the-docs.html#generating-documentation-from-docstrings
https://sphinx-rtd-tutorial.readthedocs.io/en/latest/build-the-docs.html#generating-documentation-from-docstrings
http://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html#google-vs-numpy
http://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html#google-vs-numpy
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html


policy𝑠𝑒𝑛𝑡𝑟𝑦

• This means no JSON files with complicated structures, or Binary files (the latter of which does not permit
git diff) in the repository.

• This helps to mitigate the concern that open source software could be modified to alter IAM permissions
at other organizations.

11.2.1 How Policy Sentry uses the IAM database

policy_sentry follows this process for generating policies.

1. If the User-supplied actions template is provided:

• Look up the actions in our master Actions Table in the database, which contains the Action Tables for all
AWS services

• If the action in the database matches the actions requested by the user, determine the ARN Format required.

• Proceed to step 3

2. If User-supplied ARNs with Access levels template was provided:

• Match the user-supplied ARNs with ARN formats in our ARN Table database, which contains the ARN
tables for all AWS Services

• If it matches, get the access level requested by the user

• Proceed to step 3

3. Compile those into groups, sorted by an SID namespace. The SID namespace follows the format of Ser-
vice, Access Level, and Resource ARN Type, with no character delimiter (to meet AWS IAM Policy for-
matting expectations). For example, the namespace could be SsmReadParameter, KmsReadKey, or
Ec2TagInstance.

4. Then, we associate the user-supplied ARNs matching that namespace with the SID.

5. If User-supplied actions template was provided:

• Associate the IAM actions requested by the user to the service, access level, and ARN type matching the
aforementioned SID namespace

6. If the User-supplied ARNs with Access levels template was provided:

• Associate all the IAM actions that correspond to the service, access level, and ARN type matching that
SID namespace.

7. Print the policy

Updating the AWS HTML files

The command shown below downloads the Actions, Resources, and Condition Keys pages per-service to the
policy_sentry/shared/data/docs folder.

• The HTML files will be stored in policy_sentry/shared/data/docs/list_*.partial.html

• It also add a file titled policy_sentry/shared/data/links.yml as well.

• It also builds a SQLite database file to include as part of the PyPi package.

This will update the

python3 ./utils/download_docs.py

11.2. IAM Database 39



policy𝑠𝑒𝑛𝑡𝑟𝑦

This downloads the Actions, Resources, and Condition Keys pages per-service to the policy_sentry/shared/
data/docs folder. It also add a file titled policy_sentry/shared/data/links.yml as well.

When a user runs policy_sentry initialize, these files are copied over to the config folder (~/.
policy_sentry/).

This design choice was made for a few reasons:

1. Don’t break because of AWS: The automation must not break if the AWS website is down, or if AWS drasti-
cally changes the documentation.

2. Replicability: Two git clones that build the SQLite database should always have the same results

3. Easy to review: The repository itself should contain easy-to-understand and easy-to-view documentation, which the user can replicate, to verify with the human eye that no malicious changes have been made.

• This means no JSON files with complicated structures, or Binary files (the latter of which does not
permit git diff) in the repository.

• This helps to mitigate the concern that open source software could be modified to alter IAM permis-
sions at other organizations.

11.3 Testing

11.3.1 Pipenv

pipenv --python 3.7 # create the environment
pipenv shell # start the environment
pipenv install # install both development and production dependencies

11.3.2 Invoke

To run and develop Policy Sentry without having to install from PyPi, you can use Invoke.

# List available tasks
invoke -l

# that will show the following options:
Available tasks:

build.build-package Build the policy_sentry package from the current
directory contents for use with PyPi

build.install-package Install the policy_sentry package built from the
current directory contents (not PyPi)

build.uninstall-package Uninstall the policy_sentry package
build.upload-prod Upload the package to the PyPi production server

(requires credentials)
build.upload-test Upload the package to the TestPyPi server

(requires credentials)
docs.make-html Make the HTML docs locally
docs.open-html-docs Open HTML docs in Google Chrome locally on your

computer
docs.remove-html-files Remove the html files
integration.analyze-policy Integration testing: Tests the `analyze`

functionality

(continues on next page)

40 Chapter 11. Contributing



policy𝑠𝑒𝑛𝑡𝑟𝑦

(continued from previous page)

integration.clean Runs `rm -rf $HOME/.policy_sentry`
integration.initialize Integration testing: Initialize the

policy_sentry database
integration.query Integration testing: Tests the `query`

functionality (querying the IAM database)
integration.query-yaml Integration testing: Tests the `query`

functionality (querying the IAM database) - but
with yaml

integration.version Print the version
integration.write-policy Integration testing: Tests the `write-policy`

function.
test.lint Linting with `pylint` and `autopep8`
test.security Runs `bandit` and `safety check`
unit.nose Unit testing: Runs unit tests using `nosetests`
unit.pytest Unit testing: Runs unit tests using `pytest`

# To run them, specify `invoke` plus the options:
invoke build.build-package

invoke integration.clean
invoke integration.initialize
invoke integration.analyze-policy
invoke integration.query
invoke integration.write-policy

invoke test.lint
invoke test.security

invoke unit.nose

11.3.3 Local Unit Testing and Integration Testing: Quick and Easy

We highly suggest that you run all the tests before pushing a significant commit. It would be painful to copy/paste all
of those lines above - so we’ve compiled a test script in the utils folder.

Just run this from the root of the repository:

./utils/run_tests.sh

It will execute all of the tests that would normally be run during the TravisCI build. If you want to see if it will pass
TravisCI, you can just run that quick command on your machine.

11.3.4 Running the Test Suite

We use Nose for unit testing. All tests are placed in the tests folder.

• Just run the following:

nosetests -v

• Alternatively, you can use invoke, as mentioned above:

invoke unit.nose

Output:

11.3. Testing 41

https://nose.readthedocs.io/en/latest/


policy𝑠𝑒𝑛𝑡𝑟𝑦

test_overrides_yml_config: Tests the format of the overrides yml file for the RAM
→˓service ... ok
test_passing_overall_iam_action_override: Tests iam:CreateAccessKey ... ok
test_get_dependent_actions_double (test_actions.ActionsTestCase) ... ok
test_get_dependent_actions_several (test_actions.ActionsTestCase) ... ok
test_get_dependent_actions_single (test_actions.ActionsTestCase) ... ok
test_analyze_by_access_level: Test out calling this as a library ... ok
test_determine_risky_actions_from_list: Test comparing requested actions to a list of
→˓risky actions ... ok
test_get_actions_from_policy: Verify that the get_actions_from_policy function is
→˓grabbing the actions ... ok
test_get_actions_from_policy_file_with_explicit_actions: Verify that we can get a
→˓list of actions from a ... ok
test_get_actions_from_policy_file_with_wildcards: Verify that we can read the actions
→˓from a file, ... ok
test_remove_actions_not_matching_access_level: Verify remove_actions_not_matching_
→˓access_level is working as expected ... ok
test_get_findings: Ensure that finding.get_findings() combines two risk findings for
→˓one policy properly. ... ok
test_get_findings_by_policy_name: Testing out the 'Findings' object ... ok
test_add_s3_permissions_management_arn (test_arn_action_group.ArnActionGroupTestCase)
→˓... ok
test_get_policy_elements (test_arn_action_group.ArnActionGroupTestCase) ... ok
test_update_actions_for_raw_arn_format (test_arn_action_group.ArnActionGroupTestCase)
→˓... ok
test_does_arn_match_case_1 (test_arns.ArnsTestCase) ... ok
test_does_arn_match_case_2 (test_arns.ArnsTestCase) ... ok
test_does_arn_match_case_4 (test_arns.ArnsTestCase) ... ok
test_does_arn_match_case_5 (test_arns.ArnsTestCase) ... ok
test_does_arn_match_case_6 (test_arns.ArnsTestCase) ... ok
test_does_arn_match_case_bucket (test_arns.ArnsTestCase) ... ok
test_determine_actions_to_expand: provide expanded list of actions, like ecr:* ... ok
test_minimize_statement_actions (test_minimize_wildcard_actions.
→˓MinimizeWildcardActionsTestCase) ... ok
test_get_action_data: Tests function that gets details on a specific IAM Action. ...
→˓ok
test_get_actions_at_access_level_that_support_wildcard_arns_only: Test function that
→˓gets a list of ... ok
test_get_actions_for_service: Tests function that gets a list of actions per AWS
→˓service. ... ok
test_get_actions_matching_condition_crud_and_arn: Get a list of IAM Actions matching
→˓condition key, ... ok
test_get_actions_matching_condition_crud_and_wildcard_arn: Get a list of IAM Actions
→˓matching condition key ... ok
test_get_actions_matching_condition_key: Tests a function that gathers all instances
→˓in ... ok
test_get_actions_that_support_wildcard_arns_only: Tests function that shows all ... ok
test_get_actions_with_access_level: Tests function that gets a list of actions in a ..
→˓. ok
test_get_actions_with_arn_type_and_access_level: Tests a function that gets a list of
→˓... ok
test_get_all_actions_with_access_level: Get all actions with a given access level ...
→˓ok
test_get_arn_type_details: Tests function that grabs details about a specific ARN
→˓name ... ok
test_get_arn_types_for_service: Tests function that grabs arn_type and raw_arn pairs .
→˓.. ok

(continues on next page)

42 Chapter 11. Contributing



policy𝑠𝑒𝑛𝑡𝑟𝑦

(continued from previous page)

test_get_condition_key_details: Tests function that grabs details about a specific
→˓condition key ... ok
test_get_condition_keys_for_service: Tests function that grabs a list of condition
→˓keys per service. ... ok
test_get_raw_arns_for_service: Tests function that grabs a list of raw ARNs per
→˓service ... ok
test_remove_actions_that_are_not_wildcard_arn_only: Tests function that removes
→˓actions from a list that ... ok
test_actions_template (test_template.TemplateTestCase) ... ok
test_crud_template (test_template.TemplateTestCase) ... ok
test_actions_schema: Validates that the user-supplied YAML is working for CRUD mode ..
→˓. ok
test_actions_schema: Validates that the user-supplied YAML is working for CRUD mode ..
→˓. ok
test_print_policy_with_actions_having_dependencies (test_write_policy.
→˓WritePolicyActionsTestCase) ... ok
test_write_policy (test_write_policy.WritePolicyCrudTestCase) ... ok
test_write_policy_beijing: Tests ARNs with the partiion `aws-cn` instead of just
→˓`aws` ... ok
test_write_policy_govcloud: Tests ARNs with the partition `aws-us-gov` instead of
→˓`aws` ... ok
test_wildcard_when_not_necessary: Attempts bypass of CRUD mode wildcard-only ... ok
test_write_actions_policy_with_library_only: Write an actions mode policy without
→˓using the command line at all (library only) ... ok
test_write_crud_policy_with_library_only: Write an actions mode policy without using
→˓the command line at all (library only) ... ok
test_actions_missing_actions: write-policy actions if the actions block is missing ...
→˓ ok
test_allow_missing_access_level_categories_in_cfg: write-policy when the YAML file ...
→˓ ok
test_allow_empty_access_level_categories_in_cfg: If the content of a list is an empty
→˓string, it should sysexit ... ok
test_actions_missing_arn: write-policy actions command when YAML file block is
→˓missing an ARN ... ok
test_actions_missing_description: write-policy when the YAML file is missing a
→˓description ... ok
test_actions_missing_name: write-policy when the YAML file is missing a name ... ok

Ran 57 tests in 2.694s

OK

11.4 Project Structure

We’ll focus mostly on the intent and approach of the major files (and subfolders) within the policy_sentry/
shared directory:

11.4.1 Subfolders

Folders per command:

• The folders are mostly specific to their commands. For example, consider the files in the policy_sentry/analysis
folder.

11.4. Project Structure 43



policy𝑠𝑒𝑛𝑡𝑟𝑦

• The files in this folder are specific to the analyze command

– They all can import from the util folder and the shared folder.

– The files in this folder don’t import from other subfolders specific to other commands, like writ-
ing or downloading. (Note: There is an occasional exception here of re-using functions from the
‘querying‘ folder)

– Files in the analysis folder, to the analyze command. They don’t import from each other, with the
occasional exception of re-using functions from the querying folder. They all import common methods
from the util folder and the shared folder as well.

Files:

• shared/data/aws.sqlite3: This is the pre-bundled IAM database. Third party packages can eas-
ily query the pre-bundled IAM database by connecting to the database like this: db_session = con-
nect_db(‘bundled’)

• shared/data/audit/*.txt: These text files are the pre-bundled audit files that you can use with the
analyze-iam-policy command. Currently they are limited to privilege escalation and resource exposure.
For more information, see the page on Analyzing IAM Policies.

• shared/data/docs/*.html: These are HTML files wget’d from the Actions, Resources, and Condition
Keys AWS documentation. This is used to build our database.

• shared/data/access-level-overrides.yml: This is created to override the access levels that AWS incorrectly states
in their documentation. For instance, quite often, their service teams will say that an IAM action is “Tagging”
when it really should be “Write” - for example, secretsmanager:CreateSecret.

11.4.2 Files and functions

TODO: Generate documentation automagically based on docstrings

11.5 Versioning

We try to follow Semantic Versioning as much as possible.

11.5.1 Version bumps

Just edit the policy_sentry/bin/policy_sentry file and update the __version__ variable:

#! /usr/bin/env python
"""

policy_sentry is a tool for generating least-privilege IAM Policies.
"""
__version__ = '0.6.3' # EDIT THIS

The setup.py file will automatically pick up the new version from that file for the package info. The
@click.version_option decorator will also pick that up for the command line.

44 Chapter 11. Contributing

https://semver.org/


policy𝑠𝑒𝑛𝑡𝑟𝑦

11.6 Roadmap

11.6.1 Condition Keys

Currently, Condition Keys are not supported by this script. For an example, see the KMS key Condition Key Table
here. Note: The database does create a table of condition keys in case we develop future support for it, but it isn’t used
yet.

11.6.2 Log-based policy generation

We are considering building functionality to:

• Use Amazon Athena to query CloudTrail logs from an S3 bucket for AWS IAM API calls, similar to Cloud-
Tracker.

• Instead of identifying the exact AWS IAM actions that were used, as CloudTracker currently does, we identify:

– Resource ARNs

– Actions that indicate a CRUD level corresponding to that resource ARN. For example, if read access is
granted to an S3 bucket folder path, assume all Read actions are needed for that folder path. Otherwise,
we run into issues where CloudTrail actions and IAM actions don’t match, which is a well documented
issue by CloudTracker.

• Query the logs to determine which principals touch which ARNs.

– For each IAM principal, create a list of ARNs.

– For each ARN, plug that ARN into a policy_sentry yml file, and determine the CRUD level based on
a lazy comparison of the action listed in the cloudtrail log vs the resource ARN.

– And then run the policy_sentry yml file to generate an IAM policy that would have worked.

This was discussed in the original Hacker News post..

11.6. Roadmap 45

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awskeymanagementservice.html#awskeymanagementservice-policy-keys
https://github.com/duo-labs/cloudtracker
https://github.com/duo-labs/cloudtracker
https://news.ycombinator.com/item?id=21262954


policy𝑠𝑒𝑛𝑡𝑟𝑦

46 Chapter 11. Contributing



CHAPTER 12

Library Usage

Policy Sentry can be used as a Python library. Check out this documentation for more information and examples.

12.1 Getting Started with the Library

When using Policy Sentry manually, you have to build a local database file with the initialize function.

However, if you are developing your own Python code and you want to import Policy Sentry as a third party package,
you can skip the initialization and leverage the local database file that is bundled with the Python package itself.

This is especially useful for developers who wish to leverage Policy Sentry’s capabilities that require the use of the
IAM database (such as querying the IAM database table). This way, you don’t have to initialize the database and can
just query it immediately.

The code example is located here. It is also shown below.

We’ve built a trick into the connect_db function that developers can specify to leverage the local database. The trick is
to just use ‘bundled’ as the single parameter for the connect_db method. See the example.

from policy_sentry.shared.database import connect_db
from policy_sentry.querying.actions import get_actions_for_service

def example():
db_session = connect_db('bundled') # This is the critical line. You just need to

→˓specify `'bundled'` as the parameter.
actions = get_actions_for_service(db_session, 'cloud9') # Then you can leverage

→˓any method that requires access to the database.
for action in actions:

print(action)

if __name__ == '__main__':
example()

Try running the code from the root of the repository:

47

https://github.com/salesforce/policy_sentry/blob/master/examples/library-usage/example.py


policy𝑠𝑒𝑛𝑡𝑟𝑦

./examples/library-usage/example.py

The results will look like this:

cloud9:createenvironmentec2
cloud9:createenvironmentmembership
cloud9:deleteenvironment
cloud9:deleteenvironmentmembership
cloud9:describeenvironmentmemberships
cloud9:describeenvironmentstatus
cloud9:describeenvironments
cloud9:getusersettings
cloud9:listenvironments
cloud9:updateenvironment
cloud9:updateenvironmentmembership
cloud9:updateusersettings

12.2 Examples

These are examples for the modules and functions that will be of interest for developers leveraging Policy Sentry as a
Python library.

12.2.1 Querying the IAM Database

The following are examples of how to leverage some of the functions available from Policy Sentry. The functions
selected are likely to be of most interest to other developers.

These ones relate to querying the IAM database.

All

querying.all.get_all_services

#!/usr/bin/env python
from policy_sentry.shared.database import connect_db
from policy_sentry.querying.all import get_all_service_prefixes

if __name__ == '__main__':
db_session = connect_db('bundled')
all_service_prefixes = get_all_service_prefixes(db_session)
print(all_service_prefixes)

"""
Output:

A list of every service prefix (like 'kms' or 's3') available in the IAM database.
Note that this will not include services that do not support any ARN types, like AWS
→˓IQ.
"""

48 Chapter 12. Library Usage



policy𝑠𝑒𝑛𝑡𝑟𝑦

querying.all.get_all_actions

#!/usr/bin/env python
from policy_sentry.shared.database import connect_db
from policy_sentry.querying.all import get_all_actions

if __name__ == '__main__':
db_session = connect_db('bundled')
all_actions = get_all_actions(db_session)
print(all_actions)

"""
Output:

Every IAM action available across all services, without duplicates
"""

Actions

querying.actions.get_action_data

#!/usr/bin/env python
from policy_sentry.shared.database import connect_db
from policy_sentry.querying.actions import get_action_data
import json

if __name__ == '__main__':
db_session = connect_db('bundled')
output = get_action_data(db_session, 'ram', 'createresourceshare')
print(json.dumps(output, indent=4))

"""
Output:

{
'ram': [

{
'action': 'ram:createresourceshare',
'description': 'Create resource share with provided resource(s) and/or

→˓principal(s)',
'access_level': 'Permissions management',
'resource_arn_format': 'arn:${Partition}:ram:${Region}:${Account}

→˓:resource-share/${ResourcePath}',
'condition_keys': [

'ram:RequestedResourceType',
'ram:ResourceArn',
'ram:RequestedAllowsExternalPrincipals'

],
'dependent_actions': None

},
{

'action': 'ram:createresourceshare',
'description': 'Create resource share with provided resource(s) and/or

→˓principal(s)',
(continues on next page)

12.2. Examples 49



policy𝑠𝑒𝑛𝑡𝑟𝑦

(continued from previous page)

'access_level': 'Permissions management',
'resource_arn_format': '*',
'condition_keys': [

'aws:RequestTag/${TagKey}',
'aws:TagKeys'

],
'dependent_actions': None

}
]

}
"""

querying.actions.get_actions_for_service

#!/usr/bin/env python
from policy_sentry.shared.database import connect_db
from policy_sentry.querying.actions import get_actions_for_service
import json

if __name__ == '__main__':
db_session = connect_db('bundled')
output = get_actions_for_service(db_session, 'cloud9')
print(json.dumps(output, indent=4))

"""
Output:

[
'ram:acceptresourceshareinvitation',
'ram:associateresourceshare',
'ram:createresourceshare',
'ram:deleteresourceshare',
'ram:disassociateresourceshare',
'ram:enablesharingwithawsorganization',
'ram:rejectresourceshareinvitation',
'ram:updateresourceshare'

]
"""

querying.actions.get_actions_matching_condition_key

#!/usr/bin/env python
from policy_sentry.shared.database import connect_db
from policy_sentry.querying.actions import get_actions_matching_condition_key
import json

if __name__ == '__main__':
db_session = connect_db('bundled')
output = get_actions_matching_condition_key(db_session, "ses",

→˓"ses:FeedbackAddress")
print(json.dumps(output, indent=4))

(continues on next page)

50 Chapter 12. Library Usage



policy𝑠𝑒𝑛𝑡𝑟𝑦

(continued from previous page)

"""
Output:

[
'ses:sendemail',
'ses:sendbulktemplatedemail',
'ses:sendcustomverificationemail',
'ses:sendemail',
'ses:sendrawemail',
'ses:sendtemplatedemail'

]
"""

querying.actions.get_actions_supporting_wilcards_only

#!/usr/bin/env python
from policy_sentry.shared.database import connect_db
from policy_sentry.querying.actions import get_actions_matching_condition_key
import json

if __name__ == '__main__':
db_session = connect_db('bundled')
output = get_actions_matching_condition_key(db_session, "ses",

→˓"ses:FeedbackAddress")
print(json.dumps(output, indent=4))

"""
Output:

[
'ses:sendemail',
'ses:sendbulktemplatedemail',
'ses:sendcustomverificationemail',
'ses:sendemail',
'ses:sendrawemail',
'ses:sendtemplatedemail'

]
"""

querying.actions.get_actions_with_access_levels

#!/usr/bin/env python
from policy_sentry.shared.database import connect_db
from policy_sentry.querying.actions import get_actions_with_access_level
import json

if __name__ == '__main__':
db_session = connect_db('bundled')
output = get_actions_with_access_level(db_session, 's3', 'Permissions management')
print(json.dumps(output, indent=4))

"""

(continues on next page)

12.2. Examples 51



policy𝑠𝑒𝑛𝑡𝑟𝑦

(continued from previous page)

Output:

s3:bypassgovernanceretention
s3:deleteaccesspointpolicy
s3:deletebucketpolicy
s3:objectowneroverridetobucketowner
s3:putaccesspointpolicy
s3:putaccountpublicaccessblock
s3:putbucketacl
s3:putbucketpolicy
s3:putbucketpublicaccessblock
s3:putobjectacl
s3:putobjectversionacl

"""

querying.actions.get_actions_with_arn_type_and_access_level

#!/usr/bin/env python
from policy_sentry.shared.database import connect_db
from policy_sentry.querying.actions import get_actions_with_arn_type_and_access_level
import json

if __name__ == '__main__':
db_session = connect_db('bundled')
output = get_actions_with_arn_type_and_access_level(db_session, "ram", "resource-

→˓share", "Permissions management")
print(json.dumps(output, indent=4))

"""
Output:

[
'ram:associateresourceshare',
'ram:createresourceshare',
'ram:deleteresourceshare',
'ram:disassociateresourceshare',
'ram:updateresourceshare'

]
"""

querying.actions.get_dependent_actions

#!/usr/bin/env python
from policy_sentry.shared.database import connect_db
from policy_sentry.querying.actions import get_dependent_actions
import json

if __name__ == '__main__':
db_session = connect_db('bundled')
output = get_dependent_actions(db_session, ["ec2:associateiaminstanceprofile"])
print(json.dumps(output, indent=4))

(continues on next page)

52 Chapter 12. Library Usage



policy𝑠𝑒𝑛𝑡𝑟𝑦

(continued from previous page)

"""
Output:

[
"iam:passrole"

]
"""

ARNs

querying.arns.get_arn_type_details

#!/usr/bin/env python
from policy_sentry.shared.database import connect_db
from policy_sentry.querying.arns import get_arn_type_details
import json

if __name__ == '__main__':
db_session = connect_db('bundled')
output = get_arn_type_details(db_session, "cloud9", "environment")
print(json.dumps(output, indent=4))

"""
Output:

{
"resource_type_name": "environment",
"raw_arn": "arn:${Partition}:cloud9:${Region}:${Account}:environment:${ResourceId}

→˓",
"condition_keys": None

}
"""

querying.arns.get_arn_types_for_service

#!/usr/bin/env python
from policy_sentry.shared.database import connect_db
from policy_sentry.querying.arns import get_arn_types_for_service
import json

if __name__ == '__main__':
db_session = connect_db('bundled')
output = get_arn_types_for_service(db_session, "s3")
print(json.dumps(output, indent=4))

"""
Output:

{
"accesspoint": "arn:${Partition}:s3:${Region}:${Account}:accesspoint/$

→˓{AccessPointName}",
"bucket": "arn:${Partition}:s3:::${BucketName}",

(continues on next page)

12.2. Examples 53



policy𝑠𝑒𝑛𝑡𝑟𝑦

(continued from previous page)

"object": "arn:${Partition}:s3:::${BucketName}/${ObjectName}",
"job": "arn:${Partition}:s3:${Region}:${Account}:job/${JobId}",

}
"""

querying.arns.get_raw_arns_for_service

#!/usr/bin/env python
from policy_sentry.shared.database import connect_db
from policy_sentry.querying.arns import get_raw_arns_for_service
import json

if __name__ == '__main__':
db_session = connect_db('bundled')
output = get_raw_arns_for_service(db_session, "s3")
print(json.dumps(output, indent=4))

"""
Output:

[
"arn:${Partition}:s3:${Region}:${Account}:accesspoint/${AccessPointName}",
"arn:${Partition}:s3:::${BucketName}",
"arn:${Partition}:s3:::${BucketName}/${ObjectName}",
"arn:${Partition}:s3:${Region}:${Account}:job/${JobId}"

]
"""

Conditions

querying.conditions.get_condition_key_details

#!/usr/bin/env python
from policy_sentry.shared.database import connect_db
from policy_sentry.querying.conditions import get_condition_key_details
import json

if __name__ == '__main__':
db_session = connect_db('bundled')
output = get_condition_key_details(db_session, "cloud9", "cloud9:Permissions")
print(json.dumps(output, indent=4))

"""
Output:

{
"name": "cloud9:Permissions",
"description": "Filters access by the type of AWS Cloud9 permissions",
"condition_value_type": "string"

}
"""

54 Chapter 12. Library Usage



policy𝑠𝑒𝑛𝑡𝑟𝑦

querying.conditions.get_condition_keys_for_service

#!/usr/bin/env python
from policy_sentry.shared.database import connect_db
from policy_sentry.querying.conditions import get_condition_keys_for_service
import json

if __name__ == '__main__':
db_session = connect_db('bundled')
output = get_condition_keys_for_service(db_session, "cloud9")
print(json.dumps(output, indent=4))

"""
Output:

[
'cloud9:EnvironmentId',
'cloud9:EnvironmentName',
'cloud9:InstanceType',
'cloud9:Permissions',
'cloud9:SubnetId',
'cloud9:UserArn'

]
"""

12.2.2 Writing Policies

The following are examples of how to leverage some of the functions available from Policy Sentry. The functions
selected are likely to be of most interest to other developers.

These ones refer to leveraging Policy Sentry as a library to write IAM policies.

Actions Mode: Writing Policies by providing a list of Actions

#!/usr/bin/env python
from policy_sentry.shared.database import connect_db
from policy_sentry.writing.template import get_actions_template_dict
from policy_sentry.command.write_policy import write_policy_with_template
import json

if __name__ == '__main__':
db_session = connect_db('bundled')
actions_template = get_actions_template_dict()
actions_to_add = ['kms:CreateGrant', 'kms:CreateCustomKeyStore',

→˓'ec2:AuthorizeSecurityGroupEgress',
'ec2:AuthorizeSecurityGroupIngress']

actions_template['actions'].extend(actions_to_add)
policy = write_policy_with_template(db_session, actions_template)
print(json.dumps(policy, indent=4))

"""
Output:

(continues on next page)

12.2. Examples 55



policy𝑠𝑒𝑛𝑡𝑟𝑦

(continued from previous page)

{
"Version": "2012-10-17",
"Statement": [

{
"Sid": "KmsPermissionsmanagementKmskey",
"Effect": "Allow",
"Action": [

"kms:creategrant"
],
"Resource": [

"arn:${Partition}:kms:${Region}:${Account}:key/${KeyId}"
]

},
{

"Sid": "Ec2WriteSecuritygroup",
"Effect": "Allow",
"Action": [

"ec2:authorizesecuritygroupegress",
"ec2:authorizesecuritygroupingress"

],
"Resource": [

"arn:${Partition}:ec2:${Region}:${Account}:security-group/$
→˓{SecurityGroupId}"

]
},
{

"Sid": "MultMultNone",
"Effect": "Allow",
"Action": [

"kms:createcustomkeystore",
"cloudhsm:describeclusters"

],
"Resource": [

"*"
]

}
]

}
"""

CRUD Mode: Writing Policies by Access Levels and ARNs

#!/usr/bin/env python
from policy_sentry.shared.database import connect_db
from policy_sentry.writing.template import get_crud_template_dict
from policy_sentry.command.write_policy import write_policy_with_template
import json

if __name__ == '__main__':
db_session = connect_db('bundled')
crud_template = get_crud_template_dict()
wildcard_actions_to_add = ["kms:createcustomkeystore", "cloudhsm:describeclusters

→˓"]
crud_template['mode'] = 'crud'

(continues on next page)

56 Chapter 12. Library Usage



policy𝑠𝑒𝑛𝑡𝑟𝑦

(continued from previous page)

crud_template['read'].append("arn:aws:secretsmanager:us-east-
→˓1:123456789012:secret:mysecret")

crud_template['write'].append("arn:aws:secretsmanager:us-east-
→˓1:123456789012:secret:mysecret")

crud_template['list'].append("arn:aws:s3:::example-org-sbx-vmimport/stuff")
crud_template['permissions-management'].append("arn:aws:kms:us-east-

→˓1:123456789012:key/123456")
crud_template['wildcard'].extend(wildcard_actions_to_add)
crud_template['tagging'].append("arn:aws:ssm:us-east-1:123456789012:parameter/test

→˓")
# Modify it
policy = write_policy_with_template(db_session, crud_template)
print(json.dumps(policy, indent=4))

"""
Output:

{
"Version": "2012-10-17",
"Statement": [

{
"Sid": "MultMultNone",
"Effect": "Allow",
"Action": [

"kms:createcustomkeystore"
],
"Resource": [

"*"
]

},
{

"Sid": "SecretsmanagerReadSecret",
"Effect": "Allow",
"Action": [

"secretsmanager:describesecret",
"secretsmanager:getresourcepolicy",
"secretsmanager:getsecretvalue",
"secretsmanager:listsecretversionids"

],
"Resource": [

"arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret"
]

},
{

"Sid": "SecretsmanagerWriteSecret",
"Effect": "Allow",
"Action": [

"secretsmanager:cancelrotatesecret",
"secretsmanager:deletesecret",
"secretsmanager:putsecretvalue",
"secretsmanager:restoresecret",
"secretsmanager:rotatesecret",
"secretsmanager:updatesecret",
"secretsmanager:updatesecretversionstage"

],
"Resource": [

(continues on next page)

12.2. Examples 57



policy𝑠𝑒𝑛𝑡𝑟𝑦

(continued from previous page)

"arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret"
]

},
{

"Sid": "KmsPermissionsmanagementKmskey",
"Effect": "Allow",
"Action": [

"kms:creategrant",
"kms:putkeypolicy",
"kms:retiregrant",
"kms:revokegrant"

],
"Resource": [

"arn:aws:kms:us-east-1:123456789012:key/123456"
]

}
]

}
"""

12.2.3 Analyzing Policies

The following are examples of how to leverage some of the functions available from Policy Sentry. The functions
selected are likely to be of most interest to other developers.

These ones relate to the analysis features.

Analyzing by access level

Determine if a policy has any actions with a given access level. This is particularly useful when determining who has
‘Permissions management’ level access.

analysis.analyze_by_access_level

#!/usr/bin/env python
from policy_sentry.shared.database import connect_db
from policy_sentry.analysis.analyze import analyze_by_access_level
import json

if __name__ == '__main__':
db_session = connect_db('bundled')
permissions_management_policy = {

"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": [

# These ones are Permissions management
"ecr:SetRepositoryPolicy",
"secretsmanager:DeleteResourcePolicy",
"iam:UpdateAccessKey",
# These ones are not permissions management

(continues on next page)

58 Chapter 12. Library Usage



policy𝑠𝑒𝑛𝑡𝑟𝑦

(continued from previous page)

"ecr:GetRepositoryPolicy",
"ecr:DescribeRepositories",
"ecr:ListImages",
"ecr:DescribeImages",

],
"Resource": "*"

}
]

}
permissions_management_actions = analyze_by_access_level(db_session, permissions_

→˓management_policy, "permissions-management")
print(json.dumps(permissions_management_actions, indent=4))

"""
Output:

[
'ecr:setrepositorypolicy',
'iam:updateaccesskey',
'secretsmanager:deleteresourcepolicy'

]
"""

Expanding actions from a policy file

#!/usr/bin/env python
from policy_sentry.shared.database import connect_db
from policy_sentry.util.policy_files import get_actions_from_policy
from policy_sentry.analysis.analyze import determine_actions_to_expand
import json

POLICY_JSON_TO_EXPAND = {
"Version": "2012-10-17",
"Statement": [
{

"Effect": "Allow",
"Action": [

"cloud9:*",
],
"Resource": "*"

}
]

}

if __name__ == '__main__':
db_session = connect_db('bundled')
requested_actions = get_actions_from_policy(POLICY_JSON_TO_EXPAND)
expanded_actions = determine_actions_to_expand(db_session, requested_actions)
print(json.dumps(expanded_actions, indent=4))

"""
Output:

(continues on next page)

12.2. Examples 59



policy𝑠𝑒𝑛𝑡𝑟𝑦

(continued from previous page)

[
"cloud9:createenvironmentec2",
"cloud9:createenvironmentmembership",
"cloud9:deleteenvironment",
"cloud9:deleteenvironmentmembership",
"cloud9:describeenvironmentmemberships",
"cloud9:describeenvironments",
"cloud9:describeenvironmentstatus",
"cloud9:getusersettings",
"cloud9:listenvironments",
"cloud9:updateenvironment",
"cloud9:updateenvironmentmembership",
"cloud9:updateusersettings"

]
"""

12.3 Module Reference

These are modules and functions that will be of interest for developers leveraging Policy Sentry as a Python library.

12.3.1 Querying

querying.all

IAM Database queries that are not specific to either the Actions, ARNs, or Condition Keys tables.

policy_sentry.querying.all.get_all_actions(db_session)
Gets a huge list of all IAM actions. This is used as part of the policyuniverse approach to minimizing IAM
Policies to meet AWS-mandated character limits on policies.

Parameters db_session – SQLAlchemy database session object

Returns A list of all actions present in the database.

policy_sentry.querying.all.get_all_service_prefixes(db_session)
Gets all the AWS service prefixes from the actions table.

If the action table does NOT have specific IAM actions (and therefore only supports * actions), then it will not
be included in the response.

Parameters db_session – The SQLAlchemy database session

Returns A list of all AWS service prefixes present in the table.

querying.actions

Methods that execute specific queries against the SQLite database for the ACTIONS table. This supports the pol-
icy_sentry query functionality

policy_sentry.querying.actions.get_action_data(db_session, service, name)
Get details about an IAM Action in JSON format.

Parameters

• db_session – SQLAlchemy database session object

60 Chapter 12. Library Usage



policy𝑠𝑒𝑛𝑡𝑟𝑦

• service – An AWS service prefix, like s3 or kms

• name – The name of an AWS IAM action, like GetObject. To get data about all actions in
a service, specify “*”

Returns A dictionary containing metadata about an IAM Action.

policy_sentry.querying.actions.get_actions_at_access_level_that_support_wildcard_arns_only(db_session,
ser-
vice,
ac-
cess_level)

Get a list of actions at an access level that do not support restricting the action to resource ARNs.

Parameters

• db_session – SQLAlchemy database session object

• service – A single AWS service prefix, like s3 or kms

• access_level – An access level as it is written in the database, such as ‘Read’, ‘Write’,
‘List’, ‘Permisssions management’, or ‘Tagging’

Returns A list of actions

policy_sentry.querying.actions.get_actions_for_service(db_session, service)
Get a list of available actions per AWS service

Parameters

• db_session – SQLAlchemy database session object

• service – An AWS service prefix, like s3 or kms

Returns A list of actions

policy_sentry.querying.actions.get_actions_matching_condition_crud_and_arn(db_session,
con-
di-
tion_key,
ac-
cess_level,
raw_arn)

Get a list of IAM Actions matching a condition key, CRUD level, and raw ARN format.

Parameters

• db_session – SQL Alchemy database session

• condition_key – A condition key, like aws:TagKeys

• access_level – Access level that matches the database value. “Read”, “Write”, “List”,
“Tagging”, or “Permissions management”

• raw_arn – The raw ARN format in the database, like
arn:${Partition}:s3:::${BucketName}

Returns List of IAM Actions

policy_sentry.querying.actions.get_actions_matching_condition_key(db_session,
service,
condi-
tion_key)

Get a list of actions under a service that allow the use of a specified condition key

Parameters

12.3. Module Reference 61



policy𝑠𝑒𝑛𝑡𝑟𝑦

• db_session – SQLAlchemy database session

• service – A single AWS service prefix

• condition_key – The condition key to look for.

Returns A list of actions

policy_sentry.querying.actions.get_actions_that_support_wildcard_arns_only(db_session,
ser-
vice)

Get a list of actions that do not support restricting the action to resource ARNs.

Parameters

• db_session – SQLAlchemy database session object

• service – A single AWS service prefix, like s3 or kms

Returns A list of actions

policy_sentry.querying.actions.get_actions_with_access_level(db_session, ser-
vice, access_level)

Get a list of actions in a service under different access levels.

Parameters

• db_session – SQLAlchemy database session object

• service – A single AWS service prefix, like s3 or kms

• access_level – An access level as it is written in the database, such as ‘Read’, ‘Write’,
‘List’, ‘Permisssions management’, or ‘Tagging’

Returns A list of actions

policy_sentry.querying.actions.get_actions_with_arn_type_and_access_level(db_session,
ser-
vice,
re-
source_type_name,
ac-
cess_level)

Get a list of actions in a service under different access levels, specific to an ARN format.

Parameters

• db_session – SQLAlchemy database session object

• service – A single AWS service prefix, like s3 or kms

• resource_type_name – The ARN type name, like bucket or key

Returns A list of actions

policy_sentry.querying.actions.get_dependent_actions(db_session, actions_list)
Given a list of IAM Actions, query the database to determine if the action has dependent actions in the fifth
column of the Resources, Actions, and Condition keys tables. If it does, add the dependent actions to the list,
and return the updated list.

It includes the original action in there as well. So, if you supply kms:CreateCustomKeyStore, it will give you
kms:CreateCustomKeyStore as well as cloudhsm:DescribeClusters

To get dependent actions for a single given IAM action, just provide the action as a list with one item, like this:
get_dependent_actions(db_session, [‘kms:CreateCustomKeystore’])

Parameters

62 Chapter 12. Library Usage



policy𝑠𝑒𝑛𝑡𝑟𝑦

• db_session – SQLAlchemy database session object

• actions_list – A list of actions to use in querying the database for dependent actions

Returns Updated list of actions, including dependent actions if applicable.

policy_sentry.querying.actions.remove_actions_not_matching_access_level(db_session,
ac-
tions_list,
ac-
cess_level)

Given a list of actions, return a list of actions that match an access level

Parameters

• db_session – The SQLAlchemy database session

• actions_list – A list of actions

• access_level – ‘read’, ‘write’, ‘list’, ‘tagging’, or ‘permissions-management’

Returns Updated list of actions, where the actions not matching the requested access level are re-
moved.

policy_sentry.querying.actions.remove_actions_that_are_not_wildcard_arn_only(db_session,
ac-
tions_list)

Given a list of actions, remove the ones that CAN be restricted to ARNs, leaving only the ones that cannot.

Parameters

• db_session – SQL Alchemy database session object

• actions_list – A list of actions

Returns An updated list of actions

Return type list

querying.arns

Methods that execute specific queries against the SQLite database for the ARN table. This supports the policy_sentry
query functionality

policy_sentry.querying.arns.get_arn_data(db_session, service, name)
Get details about ARNs in JSON format.

Parameters

• db_session – SQLAlchemy database session object

• service – An AWS service prefix, like s3 or kms

• name – The name of a resource type, like bucket or object. To get details on ALL arns in a
service, specify “*” here.

Returns Metadata about an ARN type

policy_sentry.querying.arns.get_arn_type_details(db_session, service, name)
Get details about a resource ARN type name in JSON format.

Parameters

• db_session – SQLAlchemy database session object

• service – An AWS service prefix, like s3 or kms

12.3. Module Reference 63



policy𝑠𝑒𝑛𝑡𝑟𝑦

• name – The name of a resource type, like bucket or object

Returns Metadata about an ARN type

policy_sentry.querying.arns.get_arn_types_for_service(db_session, service)
Get a list of available ARN short names per AWS service.

Parameters

• db_session – SQLAlchemy database session object

• service – An AWS service prefix, like s3 or kms

Returns A list of ARN types, like bucket or object

policy_sentry.querying.arns.get_raw_arns_for_service(db_session, service)
Get a list of available raw ARNs per AWS service

Parameters

• db_session – SQLAlchemy database session object

• service – An AWS service prefix, like s3 or kms

Returns A list of raw ARNs

policy_sentry.querying.arns.get_resource_type_name_with_raw_arn(db_session,
raw_arn)

Given a raw ARN, return the resource type name as shown in the database.

Parameters

• db_session – SQLAlchemy database session object

• raw_arn – The raw ARN stored in the database, like
‘arn:${Partition}:s3:::${BucketName}’

Returns The resource type name, like bucket

querying.conditions

Methods that execute specific queries against the SQLite database for the CONDITIONS table. This supports the
policy_sentry query functionality

policy_sentry.querying.conditions.get_condition_key_details(db_session, ser-
vice, condi-
tion_key_name)

Get details about a specific condition key in JSON format

Parameters

• db_session – SQLAlchemy database session object

• service – An AWS service prefix, like ec2 or kms

• condition_key_name – The name of a condition key, like ec2:Vpc

Returns Metadata about the condition key

policy_sentry.querying.conditions.get_condition_keys_available_to_raw_arn(db_session,
raw_arn)

Get a list of condition keys available to a RAW ARN

Parameters

• db_session – SQLAlchemy database session object

64 Chapter 12. Library Usage



policy𝑠𝑒𝑛𝑡𝑟𝑦

• raw_arn – The value in the database, like arn:${Partition}:s3:::${BucketName}/${ObjectName}

policy_sentry.querying.conditions.get_condition_keys_for_service(db_session,
service)

Get a list of available conditions per AWS service

Parameters

• db_session – SQLAlchemy database session object

• service – An AWS service prefix, like s3 or kms

Returns A list of condition keys

policy_sentry.querying.conditions.get_condition_value_type(db_session, condi-
tion_key)

Get the data type of the condition key - like Date, String, etc. :param db_session: SQLAlchemy database session
object :param condition_key: A condition key, like a4b:filters_deviceType :return:

policy_sentry.querying.conditions.get_conditions_for_action_and_raw_arn(db_session,
ac-
tion,
raw_arn)

Get a list of conditions available to an action.

Parameters

• db_session – SQLAlchemy database session object

• action – The IAM action, like s3:GetObject

• raw_arn – The raw ARN format specific to the action

Returns

12.3.2 Writing

command.write_policy

Given a Policy Sentry YML template, write a least-privilege IAM Policy in CRUD mode or Actions mode.

policy_sentry.command.write_policy.write_policy_with_template(db_session, cfg,
minimize=None)

This function is called by write-policy so the config can be passed in as a dict without running into a Click-
related error. Use this function, rather than the write-policy function, if you are using Policy Sentry as a python
library.

Parameters

• db_session – SQL Alchemy database session object

• cfg – The loaded YAML as a dict. Must follow Policy Sentry dictated format.

• minimize – Minimize the resulting statement with safe usage of wildcards to reduce pol-
icy length. Set this to the character length you want - for example, 0, or 4. Defaults to
none.

writing.sid_group

sid_group indicates that this is a collection of policy-related data organized by their SIDs

12.3. Module Reference 65



policy𝑠𝑒𝑛𝑡𝑟𝑦

class policy_sentry.writing.sid_group.SidGroup
This class is critical to the creation of least privilege policies. It uses the SIDs as namespaces. The namespaces
follow this format:

{Servicename}{Accesslevel}{Resourcetypename}

So, a resulting statement’s SID might look like ‘S3ListBucket’

If a condition key is supplied (like s3:RequestJob), the SID string will be significantly longer. It will resemble
this format:

{Servicename}{Accesslevel}{Resourcetypename}{Conditionkeystring}{Conditiontypestring}{Conditionkeyvalue}

For example: EC2 write actions on the security-group resource, using the following condition map:

“Condition”: { “StringEquals”: {“ec2:ResourceTag/Owner”: “${aws:username}”}

}

The resulting SID would be: Ec2WriteSecuritygroupResourcetagownerStringequalsAwsusername

Or, for actions that support wildcard ARNs only, an example could be: Ec2WriteMultResourcetagownerStringequalsAwsusername

add_action_without_resource_constraint(action)
This handles the cases where certain actions do not handle resource constraints - either by AWS, or for
flexibility when adding dependent actions.

Parameters action – The single action to add to the MultMultNone SID namespace. For
instance, s3:ListAllMyBuckets

add_by_arn_and_access_level(db_session, arn_list, access_level, conditions_block=None)
This adds the user-supplied ARN(s), service prefixes, access levels, and condition keys (if applicable)
given by the user. It derives the list of IAM actions based on the user’s requested ARNs and access levels.

Parameters

• db_session – SQLAlchemy database session

• arn_list – Just a list of resource ARNs.

• access_level – “Read”, “List”, “Tagging”, “Write”, or “Permissions management”

• conditions_block – Optionally, a condition block with one or more conditions

add_by_list_of_actions(db_session, supplied_actions)
Takes a list of actions, queries the database for corresponding arns, adds them to the object.

Parameters

• db_session – SQLAlchemy database session object

• supplied_actions – A list of supplied actions

get_rendered_policy(db_session, minimize=None)
Get the JSON rendered policy

Parameters

• db_session – SQLAlchemy database session

• minimize – Reduce the character count of policies without creating overlap with other
action names

Return type dict

66 Chapter 12. Library Usage



policy𝑠𝑒𝑛𝑡𝑟𝑦

get_sid(sid)
Get a single group by the SID identifier

get_sid_group()
Get the whole SID group as JSON

get_universal_conditions()
Get the universal conditions maps back as a dict

Return type dict

list_sids()
Get a list of all of them by their identifiers

Return type list

process_template(db_session, cfg, minimize=None)
Process the Policy Sentry template as a dict. This auto-detects whether or not the file is in CRUD mode or
Actions mode.

Parameters

• db_session – SQLAlchemy database session object

• cfg – The loaded YAML as a dict. Must follow Policy Sentry dictated format.

• minimize – Minimize the resulting statement with safe usage of wildcards to reduce
policy length. Set this to the character length you want - for example, 0, or 4. Defaults to
none.

remove_actions_duplicated_in_wildcard_arn()
Removes actions from the object that are in a resource-specific ARN, as well as the * resource. For
example, if ssm:GetParameter is restricted to a specific parameter path, as well as *, then we want to
remove the * option to force least privilege.

remove_actions_not_matching_these(actions_to_keep)

Parameters actions_to_keep – A list of actions to leave in the policy. All actions not in
this list are removed.

remove_sids_with_empty_action_lists()

Now that we’ve removed a bunch of actions, if there are SID groups without any actions, remove
them so we don’t get SIDs with empty action lists

policy_sentry.writing.sid_group.create_policy_sid_namespace(service, ac-
cess_level, re-
source_type_name,
condi-
tion_block=None)

Simply generates the SID name. The SID groups ARN types that share an access level.

For example, S3 objects vs. SSM Parameter have different ARN types - as do S3 objects vs S3 buckets. That’s
how we choose to group them.

Parameters

• service – “ssm”

• access_level – “Read”

• resource_type_name – “parameter”

• condition_block – {“condition_key_string”: “ec2:ResourceTag/purpose”, “condi-
tion_type_string”: “StringEquals”, “condition_value”: “test”}

12.3. Module Reference 67



policy𝑠𝑒𝑛𝑡𝑟𝑦

Returns SsmReadParameter

Return type str

policy_sentry.writing.sid_group.remove_actions_that_are_not_wildcard_arn_only(db_session,
ac-
tions_list)

Given a list of actions, remove the ones that CAN be restricted to ARNs, leaving only the ones that cannot.

Parameters

• db_session – SQL Alchemy database session object

• actions_list – A list of actions

Returns An updated list of actions

Return type list

writing.template

Templates for the policy_sentry YML files. These can be used for generating policies

policy_sentry.writing.template.create_actions_template(name)
Generate the Actions YML template with Jinja2

policy_sentry.writing.template.create_crud_template(name)
Generate the CRUD YML Template with Jinja2

policy_sentry.writing.template.get_actions_template_dict()
Get the Actions template in dict format.

policy_sentry.writing.template.get_crud_template_dict()
Generate the CRUD template in dict format

writing.validate

Validation for the Policy Sentry YML Templates.

policy_sentry.writing.validate.check(conf_schema, conf)
Validates a user-supplied JSON vs a defined schema. :param conf_schema: The Schema object that defines the
required structure. :param conf: The user-supplied schema to validate against the required structure.

policy_sentry.writing.validate.check_actions_schema(cfg)
Determines whether the user-provided config matches the required schema for Actions mode

policy_sentry.writing.validate.check_crud_schema(cfg)
Determines whether the user-provided config matches the required schema for CRUD mode

policy_sentry.writing.validate.validate_condition_block(condition_block)

Parameters condition_block – {“condition_key_string”: “ec2:ResourceTag/purpose”, “con-
dition_type_string”: “StringEquals”, “condition_value”: “test”}

Returns

writing.minimize

Functions for Minimizing statements, heavily borrowed from policyuniverse. https://github.com/Netflix-Skunkworks/
policyuniverse/

68 Chapter 12. Library Usage

https://github.com/Netflix-Skunkworks/policyuniverse/
https://github.com/Netflix-Skunkworks/policyuniverse/


policy𝑠𝑒𝑛𝑡𝑟𝑦

IAM Policies have character limits, which apply to individual policies, and there are also limits on the total aggregate
policy sizes. As such, it is not possible to use exhaustive list of explicit IAM actions. To have granular control of
specific IAM policies, we must use wildcards on IAM Actions, only in a programmatic manner.

This is typically performed by humans by reducing policies to s3:Get*, ec2:Describe*, and other approaches of the
sort.

Netflix’s PolicyUniverse has address

https://aws.amazon.com/iam/faqs/ Q: How many policies can I attach to an IAM role? * For inline policies: You can
add as many inline policies as you want to a user, role, or group, but

the total aggregate policy size (the sum size of all inline policies) per entity cannot exceed the follow-
ing limits: - User policy size cannot exceed 2,048 characters. - Role policy size cannot exceed 10,240
characters. - Group policy size cannot exceed 5,120 characters.

• For managed policies: You can add up to 10 managed policies to a user, role, or group.

• The size of each managed policy cannot exceed 6,144 characters.

policy_sentry.writing.minimize.check_min_permission_length(permission, min-
chars=None)

Adapted version of policyuniverse’s _check_permission_length. We are commenting out the skipping
prefix message https://github.com/Netflix-Skunkworks/policyuniverse/blob/master/policyuniverse/expander_
minimizer.py#L111

policy_sentry.writing.minimize.get_denied_prefixes_from_desired(desired_actions,
all_actions)

Adapted version of policyuniverse’s _get_denied_prefixes_from_desired, here: https://github.com/
Netflix-Skunkworks/policyuniverse/blob/master/policyuniverse/expander_minimizer.py#L101

policy_sentry.writing.minimize.minimize_statement_actions(desired_actions,
all_actions, min-
chars=None)

This is a condensed version of policyuniverse’s minimize_statement_actions, changed for our purposes. https:
//github.com/Netflix-Skunkworks/policyuniverse/blob/master/policyuniverse/expander_minimizer.py#L123

12.3.3 Analyzing

analysis.analyze

Functions to support the analyze capability in this tool

policy_sentry.analysis.analyze.analyze_by_access_level(db_session, policy_json, ac-
cess_level)

Determine if a policy has any actions with a given access level. This is particularly useful when determining
who has ‘Permissions management’ level access

Parameters

• db_session – SQLAlchemy database session

• policy_json – a dictionary representing the AWS JSON policy

• access_level – The normalized access level - either ‘read’, ‘list’, ‘write’, ‘tagging’, or
‘permissions-management’

policy_sentry.analysis.analyze.analyze_policy_directory(db_session, pol-
icy_directory, ac-
count_id, from_audit_file,
finding_type, ex-
cluded_role_patterns)

12.3. Module Reference 69

https://aws.amazon.com/iam/faqs/
https://github.com/Netflix-Skunkworks/policyuniverse/blob/master/policyuniverse/expander_minimizer.py#L111
https://github.com/Netflix-Skunkworks/policyuniverse/blob/master/policyuniverse/expander_minimizer.py#L111
https://github.com/Netflix-Skunkworks/policyuniverse/blob/master/policyuniverse/expander_minimizer.py#L101
https://github.com/Netflix-Skunkworks/policyuniverse/blob/master/policyuniverse/expander_minimizer.py#L101
https://github.com/Netflix-Skunkworks/policyuniverse/blob/master/policyuniverse/expander_minimizer.py#L123
https://github.com/Netflix-Skunkworks/policyuniverse/blob/master/policyuniverse/expander_minimizer.py#L123


policy𝑠𝑒𝑛𝑡𝑟𝑦

Audits a directory of policy JSON files.

Parameters

• db_session – SQLAlchemy database session object

• policy_directory – The file directory where the policies are stored

• account_id – The AWS Account ID

• from_audit_file – The file containing the list of problematic actions

• finding_type – The type of finding - resource_exposure, privilege_escalation, net-
work_exposure, or credentials_exposure

Returns A dictionary of findings with the policy names as keys.

policy_sentry.analysis.analyze.analyze_policy_file(db_session, policy_file, ac-
count_id, from_audit_file, find-
ing_type, excluded_role_patterns)

Given a policy file, determine risky actions based on a separate file containing a list of actions. If it matches a
policy exclusion pattern from the report-config.yml file, that policy file will be skipped.

Parameters

• db_session – SQLAlchemy database session object

• policy_file – The path to the policy file to be evaluated

• account_id – The AWS Account ID

• from_audit_file – The file containing the list of problematic actions

• finding_type – The type of finding - resource_exposure, privilege_escalation, net-
work_exposure, or credentials_exposure

• excluded_role_patterns – A RegEx pattern for excluding policy names from eval-
uation.

Returns False if the policy name matches excluded role patterns, or if it does not, a dictionary
containing the findings.

Return type dict

policy_sentry.analysis.analyze.analyze_statement_by_access_level(db_session,
state-
ment_json,
ac-
cess_level)

Determine if a statement has any actions with a given access level.

Parameters

• db_session – SQLAlchemy database session

• statement_json – a dictionary representing a statement from an AWS JSON policy

• access_level – The normalized access level - either ‘read’, ‘list’, ‘write’, ‘tagging’, or
‘permissions-management’

policy_sentry.analysis.analyze.determine_actions_to_expand(db_session, ac-
tion_list)

Determine if an action needs to get expanded from its wildcard

Parameters

• db_session – A SQLAlchemy database session object

70 Chapter 12. Library Usage



policy𝑠𝑒𝑛𝑡𝑟𝑦

• action_list – A list of actions

Returns A list of actions

Return type list

policy_sentry.analysis.analyze.determine_risky_actions(requested_actions, au-
dit_file)

compare the actions in the policy against the audit file of high risk actions

Parameters

• requested_actions – A list of the actions that are requested by the policy under eval-
uation

• audit_file – The absolute path to the file that contains a list of IAM action to evaluate.

Returns a list of any actions that are included in the file of risky actions

policy_sentry.analysis.analyze.determine_risky_actions_from_list(requested_actions,
risky_actions)

compare the actions in the policy against a list of high risk actions

Parameters

• requested_actions – A list of the actions that are requested by the policy under eval-
uation

• risky_actions – A list of risky IAM actions to evaluate.

Returns a list of any actions that are included in the file of risky actions

policy_sentry.analysis.analyze.expand(action, db_session)
expand the action wildcards into a full action

Parameters

• action – An action in the form with a wildcard - like s3:Get*, or s3:L*

• db_session – SQLAlchemy database session object

Returns A list of all the expanded actions (like actions matching s3:Get*)

Return type list

policy_sentry.analysis.analyze.read_risky_iam_permissions_text_file(audit_file)
read in the audit file of high risk actions

Parameters audit_file – Path to the file containing a list of risky actions

Return risky_actions A list of actions from the file

12.3.4 Utilities

util.policy_files

A few methods for parsing policies.

policy_sentry.util.policy_files.get_actions_from_json_policy_file(file)
read the json policy file and return a list of actions

policy_sentry.util.policy_files.get_actions_from_policy(data)
Given a policy dictionary, create a list of the actions

12.3. Module Reference 71



policy𝑠𝑒𝑛𝑡𝑟𝑦

policy_sentry.util.policy_files.get_actions_from_statement(statement)
Given a statement dictionary, create a list of the actions

util.arns

Functions to use for parsing ARNs, matching ARN types, and getting the right fragment/component from an ARN
string,

policy_sentry.util.arns.arn_has_colons(arn)
Given an ARN, determine if the ARN has colons in it. Just useful for the hacky methods for parsing ARN
namespaces. See http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html for more details
on ARN namespacing.

policy_sentry.util.arns.arn_has_slash(arn)
Given an ARN, determine if the ARN has a stash in it. Just useful for the hacky methods for parsing ARN
namespaces. See http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html for more details
on ARN namespacing.

policy_sentry.util.arns.does_arn_match(arn_to_test, arn_in_database)
Given two ARNs, determine if they match. The cases supported are outlined below.

Case 1: arn:partition:service:region:account-id:resource

Case 2: arn:partition:service:region:account-id:resourcetype/resource

Case 3: arn:partition:service:region:account-id:resourcetype/resource/qualifier

Case 4: arn:partition:service:region:account-id:resourcetype/resource:qualifier

Case 5: arn:partition:service:region:account-id:resourcetype:resource

Case 6: arn:partition:service:region:account-id:resourcetype:resource:qualifier

Source: https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#genref-arns

Parameters arn – ARN to parse

Returns result of whether or not the ARNs match

policy_sentry.util.arns.get_account_from_arn(arn)
Given an ARN, return the account ID in the ARN, if it is available. In certain cases like S3 it is not

policy_sentry.util.arns.get_partition_from_arn(arn)
Given an ARN string, return the partition string. This is usually aws unless you are in C2S or AWS GovCloud.

policy_sentry.util.arns.get_region_from_arn(arn)
Given an ARN, return the region in the ARN, if it is available. In certain cases like S3 it is not

policy_sentry.util.arns.get_resource_from_arn(arn)
Given an ARN, parse it according to ARN namespacing and return the resource. See http://docs.aws.amazon.
com/general/latest/gr/aws-arns-and-namespaces.html for more details on ARN namespacing.

policy_sentry.util.arns.get_resource_path_from_arn(arn)
Given an ARN, parse it according to ARN namespacing and return the resource path. See http://docs.aws.
amazon.com/general/latest/gr/aws-arns-and-namespaces.html for more details on ARN namespacing.

policy_sentry.util.arns.get_service_from_arn(arn)
Given an ARN string, return the service

policy_sentry.util.arns.parse_arn(arn)
Given an ARN, split up the ARN into the ARN namespacing schema dictated by the AWS docs.

72 Chapter 12. Library Usage

http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#genref-arns
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html


policy𝑠𝑒𝑛𝑡𝑟𝑦

util.file

Functions that relate to manipulating files, loading files, and managing filepaths.

policy_sentry.util.file.check_valid_file_path(file)
Checks if the file path is valid.

Parameters file – The file to check.

Returns True if it exists, False if it does not

Return type bool

policy_sentry.util.file.create_directory_if_it_doesnt_exist(directory)
Equivalent of mkdir -p

policy_sentry.util.file.list_files_in_directory(directory)
Equivalent of ls command, and return the list of files

policy_sentry.util.file.read_this_file(filename)
Read a file at a path and return the lines from each file

policy_sentry.util.file.read_yaml_file(filename)
Reads a YAML file, safe loads, and returns the dictionary

Parameters filename – name of the yaml file

Returns dictionary of YAML file contents

policy_sentry.util.file.write_json_file(filename, json_contents)
Description: Writes a YAML file :param json_contents: a dictionary used to build the JSON. This is the IAM
Policy built by write_policy functions. :param filename: name of the yaml file, which should include the path

util.actions

Text operations specific to IAM actions

policy_sentry.util.actions.get_action_name_from_action(action)
Returns the lowercase action name from a service:action combination :param action: ec2:DescribeInstance
:return: describeinstance

policy_sentry.util.actions.get_full_action_name(service, action_name)
Gets the proper formatting for an action - the service, plus colon, plus action name. :param service: service
name, like s3 :param action_name: action name, like createbucket :return: the resulting string

policy_sentry.util.actions.get_lowercase_action_list(action_list)
Given a list of actions, return the list but in lowercase format

policy_sentry.util.actions.get_service_from_action(action)
Returns the service name from a service:action combination :param action: ec2:DescribeInstance :return: ec2

12.3. Module Reference 73

service:action
service:action


policy𝑠𝑒𝑛𝑡𝑟𝑦

74 Chapter 12. Library Usage



CHAPTER 13

Implementation Strategy

In the context of your overall organization strategy for AWS IAM, we recommend using a few measures for locking
down your AWS environments with IAM:

1. Use policy_sentry to create Identity-based policies

2. Use Service Control Policies (SCPs) to lock down available API calls per account.

• A great collection of SCPs can be found on asecure.cloud.

• Control Tower has some excellent guidance on strategy for SCPs in their documentation. Note that they
call it “Guardrails” but they are mostly SCPs. See the docs here

3. Use Repokid to revoke out of date policies as your application/roles mature.

4. Use Resource-based policies for all services that support them.

• A list of which services support resource-based policies can be found in the AWS documentation here.

5. Never provision infrastructure manually; use Infrastructure as Code

• I highly suggest Terraform for IAC over other alternatives such as CloudFormation, Chef, or Puppet.
Yevgeniy Brikman explains the reasons very well in this Gruntwork.io blog post.

• I also suggest reading HashiCorp’s Unlocking the Cloud Operating Model Whitepaper.

75

https://github.com/salesforce/policy_sentry/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html
https://asecure.cloud/l/scp/
https://docs.aws.amazon.com/controltower/latest/userguide/guardrails-reference.html
https://medium.com/netflix-techblog/introducing-aardvark-and-repokid-53b081bf3a7e
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://blog.gruntwork.io/why-we-use-terraform-and-not-chef-puppet-ansible-saltstack-or-cloudformation-7989dad2865c
https://www.hashicorp.com/cloud-operating-model


policy𝑠𝑒𝑛𝑡𝑟𝑦

76 Chapter 13. Implementation Strategy



CHAPTER 14

IAM Policies

This document covers:

• Elements of an IAM Policy

• Breakdown of the tables for Actions, Resources, and Condition keys per service

• Generally how policy_sentry uses these tables to generate IAM Policies

14.1 IAM Policy Elements

The following IAM JSON Policy elements are included in policy_sentry-generated IAM Policies:

• Version: specifies policy language versions dictated by AWS. There are two options - 2012-10-17 and
2008-10-17. policy_sentry generates policies for the most recent policy language - 2012-10-17

• Statement: There is one statement array per policy, with multiple statements/SIDs inside that statement. The
elements of a single statement/SID are listed below.

– SID: Statement ID. Optional identifier for the policy statement. SID values can be assigned to each state-
ment in a statement array.

– Effect: Allow or explicit Deny. If there is any overlap on an action or actions with Allow vs. Deny, the
Deny effect overrides the Allow.

– Action: This refers to the IAM action - i.e., s3:GetObject, or ec2:DescribeInstances. Ac-
tion text in a statement can have wildcards included: for example, ec2:* covers all EC2 actions, and
ec2:Describe* covers all EC2 actions prefixed with Describe - such as DescribeInstances,
DescribeInstanceAttributes, etc.

– Resource: This refers to an Amazon Resource Name (ARN) that the Action can be performed against.
There are differences in ARN format per service. Those differences can be viewed in the AWS Docs on
ARNs and Namespaces

The ones we don’t use in this tool:

• Condition (will be added in a future release)

77

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_version.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_statement.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_sid.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_effect.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_action.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_resource.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html


policy𝑠𝑒𝑛𝑡𝑟𝑦

• Principal

• NotPrincipal

• NotResource

14.2 Actions, Resources, and Condition Keys Per Service

If you ever write or review IAM Policies, you should bookmark the documentation page for AWS Actions,
Resources, and Context Keys here

This documentation is the seed source for the database that we create in policy_sentry. It contains tables for (1)
Actions, (2) Resources/ARNs, and (3) Condition Keys for each service. This documentation is of critical importance
because every IAM action for every IAM service has different ARNs that it can apply to, and different Condition
Keys that it can apply to.

14.2.1 Action Table

Consider the Action table snippet from KMS shown below (source documentation can be viewed on the KMS docu-
mentation here).

Actions Access Level Resource Types Condition Keys Dependent Actions
kms:CreateGrant Permissions man-

agement
key*

• kms:CallerAccount

kms:CreateCustomKeyStoreWrite • cloudhsm:DescribeClusters

As you can see, the Actions Table contains these columns:

• Actions: The name of the IAM Action

• Access Level: how the action is classified. This is limited to List, Read, Write, Permissions management, or
Tagging.

– This classification can help you understand the level of access that an action grants when you use it in a
policy.

– For more information about access levels, see Understanding Access Level Summaries Within Policy
Summaries.

• Condition Keys: The condition key available for that action. There are some service specific ones that will
contain the service namespace (i.e., ec2, or in this case, kms. Sometimes, there are AWS-level condition keys
that are available to only some actions within some services, such as aws:SourceAccount. If those are available
to the action, they will be supplied in that column.

• Dependent Actions: Some actions require that other actions can be executed by the IAM Principal. The exam-
ple above indicates that in order to call kms:CreateCustomKeyStore, you must be able to also execute
cloudhsm:DescribeClusters.

And most importantly to the context of this tool, there is the Resource Types column:

• Resource Types: This indicates whether the action supports resource-level permissions - i.e., restricting IAM
Actions by ARN. If there is a value here, it points to the ARN Table shown later in the documentation.

78 Chapter 14. IAM Policies

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_notprincipal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_notresource.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awskeymanagementservice.html#awskeymanagementservice-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awskeymanagementservice.html#awskeymanagementservice-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_understand-policy-summary-access-level-summaries.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_understand-policy-summary-access-level-summaries.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount


policy𝑠𝑒𝑛𝑡𝑟𝑦

– In the example above, you can see that kms:CreateCustomKeyStore’s Resource Types cell is blank;
this indicates that kms:CreateCustomKeyStore can only have * as the resource type.

– Conversely, for kms:CreateGrant, the action can have either (1) * as the resource type, or key* as
the resource type. The ARN format is not actually key*, it just points to that ARN format in the ARN
Table explained below.

14.2.2 ARN Table

Consider the KMS ARN Table shown below (the source documentation can be viewed on the AWS website here.

Resource
Types

ARN Condition
Keys

alias arn:${Partition}:kms:${Region}:${Account}:alias/
${Alias}

key arn:${Partition}:kms:${Region}:${Account}:key/
${KeyId}

The ARN Table has three fields:

• Resource Types: The name of the resource type. This corresponds to the “Resource Types” field in the Action
table. In the example above, the types are:

• alias

• key

• ARN: This shows the required ARN format that can be specified in IAM policies for the IAM Actions that allow
this ARN format. In the example above the ARN types are:

• arn:${Partition}:kms:${Region}:${Account}:alias/${Alias}

• arn:${Partition}:kms:${Region}:${Account}:key/${KeyId}

• Condition Keys: This specifies condition context keys that you can include in an IAM policy statement only
when both (1) this resource and (2) a supporting action from the table above are included in the statement.

14.2.3 Condition Keys Table

There is also a Condition Keys table. An example is shown below.

Condition Keys Type Description
kms:BypassPolicyLockoutSafetyCheckBool Controls access to the CreateKey and PutKeyPolicy operations based on the value of

the BypassPolicyLockoutSafetyCheck parameter in the request.
kms:CallerAccountString Controls access to specified AWS KMS operations based on the AWS account ID of

the caller. You can use this condition key to allow or deny access to all IAM users and
roles in an AWS account in a single policy statement.

Note: While policy_sentry does import the Condition Keys table into the database, it does not currently provide
functionality to insert these condition keys into the policies. This is due to the complexity of each condition key, and
the dubious viability of mandating those condition keys for every IAM policy.

We might support the Global Condition keys for IAM policies in the future, perhaps to be supplied via a user config
file, but that functionality is not on the roadmap at this time. For more information on Global Condition Keys, see this
documentation.

14.2. Actions, Resources, and Condition Keys Per Service 79

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awskeymanagementservice.html#awskeymanagementservice-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#AvailableKeys
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#AvailableKeys


policy𝑠𝑒𝑛𝑡𝑟𝑦

14.2.4 References

• ARN Formats and Service Namespaces

• IAM Policy Elements

• IAM Actions, Resources, and Context Keys per service

• Actions Table explanation

• ARN Table explanation

• Condition Keys Table explanation

• Global Condition Keys

80 Chapter 14. IAM Policies

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html#actions_table
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html#resources_table
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html#context_keys_table
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#AvailableKeys


CHAPTER 15

Minimization

This document explains the approach in the file titled policy_sentry/shared/minimize.py, which is heav-
ily borrowed from Netflix’s policyuniverse

IAM Policies have character limits, which apply to individual policies, and there are also limits on the total aggregate
policy sizes. As such, it is not possible to use exhaustive list of explicit IAM actions. To have granular control of
specific IAM policies, we must use wildcards on IAM Actions, only in a programmatic manner.

This is typically performed by humans by reducing policies to s3:Get*, ec2:Describe*, and other approaches
of the sort.

Netflix’s PolicyUniverse1 has addressed this problem using a few functions that we borrowed directly, and slightly
modified. All of these functions are inside the aforementioned minimize.py file, and are also listed below:

• get_denied_prefixes_from_desired

• check_min_permission_length

• minimize_statement_actions

We modified the functions, in short, because of how we source our list of IAM actions. Policyuniverse leverages a file
titled data.json, which appears to be a manually altered version of the policies.js file included as part of the AWS
Policy Generator website. However, that page is not updated as frequently. It also does not include the same details
that we get from the Actions, Resources, and Condition Keys page, like the Dependent Actions Field, service-specific
conditions, and most importantly the multiple ARN format types that can apply to any particular IAM Action.

See the AWS IAM FAQ page for supporting details on IAM Size. For your convenience, the relevant text is clipped
below.

Q: How many policies can I attach to an IAM role?

• For inline policies: You can add as many inline policies as you want to a user, role, or group, but the
total aggregate policy size (the sum size of all inline policies) per entity cannot exceed the following
limits:

– User policy size cannot exceed 2,048 characters.

– Role policy size cannot exceed 10,240 characters.

– Group policy size cannot exceed 5,120 characters.

81

https://github.com/Netflix-Skunkworks/policyuniverse/
https://github.com/Netflix-Skunkworks/policyuniverse/
https://github.com/Netflix-Skunkworks/policyuniverse/blob/master/policyuniverse/expander_minimizer.py#L101
https://github.com/Netflix-Skunkworks/policyuniverse/blob/master/policyuniverse/expander_minimizer.py#L111
https://github.com/Netflix-Skunkworks/policyuniverse/blob/master/policyuniverse/expander_minimizer.py#L123
https://awspolicygen.s3.amazonaws.com/js/policies.js
https://awspolicygen.s3.amazonaws.com/policygen.html
https://awspolicygen.s3.amazonaws.com/policygen.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html


policy𝑠𝑒𝑛𝑡𝑟𝑦

• For managed policies: You can add up to 10 managed policies to a user, role, or group.

• The size of each managed policy cannot exceed 6,144 characters.

82 Chapter 15. Minimization



CHAPTER 16

Indices and tables

• modindex

83



policy𝑠𝑒𝑛𝑡𝑟𝑦

84 Chapter 16. Indices and tables



Python Module Index

p
policy_sentry.analysis.analyze, 69
policy_sentry.command.write_policy, 65
policy_sentry.querying.actions, 60
policy_sentry.querying.all, 60
policy_sentry.querying.arns, 63
policy_sentry.querying.conditions, 64
policy_sentry.util.actions, 73
policy_sentry.util.arns, 72
policy_sentry.util.file, 73
policy_sentry.util.policy_files, 71
policy_sentry.writing.minimize, 68
policy_sentry.writing.sid_group, 65
policy_sentry.writing.template, 68
policy_sentry.writing.validate, 68

85



policy𝑠𝑒𝑛𝑡𝑟𝑦

86 Python Module Index



Index

A
add_action_without_resource_constraint()

(policy_sentry.writing.sid_group.SidGroup
method), 66

add_by_arn_and_access_level() (pol-
icy_sentry.writing.sid_group.SidGroup
method), 66

add_by_list_of_actions() (pol-
icy_sentry.writing.sid_group.SidGroup
method), 66

analyze_by_access_level() (in module pol-
icy_sentry.analysis.analyze), 69

analyze_policy_directory() (in module pol-
icy_sentry.analysis.analyze), 69

analyze_policy_file() (in module pol-
icy_sentry.analysis.analyze), 70

analyze_statement_by_access_level() (in
module policy_sentry.analysis.analyze), 70

arn_has_colons() (in module pol-
icy_sentry.util.arns), 72

arn_has_slash() (in module pol-
icy_sentry.util.arns), 72

C
check() (in module policy_sentry.writing.validate), 68
check_actions_schema() (in module pol-

icy_sentry.writing.validate), 68
check_crud_schema() (in module pol-

icy_sentry.writing.validate), 68
check_min_permission_length() (in module

policy_sentry.writing.minimize), 69
check_valid_file_path() (in module pol-

icy_sentry.util.file), 73
create_actions_template() (in module pol-

icy_sentry.writing.template), 68
create_crud_template() (in module pol-

icy_sentry.writing.template), 68
create_directory_if_it_doesnt_exist()

(in module policy_sentry.util.file), 73

create_policy_sid_namespace() (in module
policy_sentry.writing.sid_group), 67

D
determine_actions_to_expand() (in module

policy_sentry.analysis.analyze), 70
determine_risky_actions() (in module pol-

icy_sentry.analysis.analyze), 71
determine_risky_actions_from_list() (in

module policy_sentry.analysis.analyze), 71
does_arn_match() (in module pol-

icy_sentry.util.arns), 72

E
expand() (in module policy_sentry.analysis.analyze),

71

G
get_account_from_arn() (in module pol-

icy_sentry.util.arns), 72
get_action_data() (in module pol-

icy_sentry.querying.actions), 60
get_action_name_from_action() (in module

policy_sentry.util.actions), 73
get_actions_at_access_level_that_support_wildcard_arns_only()

(in module policy_sentry.querying.actions), 61
get_actions_for_service() (in module pol-

icy_sentry.querying.actions), 61
get_actions_from_json_policy_file() (in

module policy_sentry.util.policy_files), 71
get_actions_from_policy() (in module pol-

icy_sentry.util.policy_files), 71
get_actions_from_statement() (in module

policy_sentry.util.policy_files), 71
get_actions_matching_condition_crud_and_arn()

(in module policy_sentry.querying.actions), 61
get_actions_matching_condition_key() (in

module policy_sentry.querying.actions), 61
get_actions_template_dict() (in module pol-

icy_sentry.writing.template), 68

87



policy𝑠𝑒𝑛𝑡𝑟𝑦

get_actions_that_support_wildcard_arns_only()
(in module policy_sentry.querying.actions), 62

get_actions_with_access_level() (in mod-
ule policy_sentry.querying.actions), 62

get_actions_with_arn_type_and_access_level()
(in module policy_sentry.querying.actions), 62

get_all_actions() (in module pol-
icy_sentry.querying.all), 60

get_all_service_prefixes() (in module pol-
icy_sentry.querying.all), 60

get_arn_data() (in module pol-
icy_sentry.querying.arns), 63

get_arn_type_details() (in module pol-
icy_sentry.querying.arns), 63

get_arn_types_for_service() (in module pol-
icy_sentry.querying.arns), 64

get_condition_key_details() (in module pol-
icy_sentry.querying.conditions), 64

get_condition_keys_available_to_raw_arn()
(in module policy_sentry.querying.conditions),
64

get_condition_keys_for_service() (in mod-
ule policy_sentry.querying.conditions), 65

get_condition_value_type() (in module pol-
icy_sentry.querying.conditions), 65

get_conditions_for_action_and_raw_arn()
(in module policy_sentry.querying.conditions),
65

get_crud_template_dict() (in module pol-
icy_sentry.writing.template), 68

get_denied_prefixes_from_desired() (in
module policy_sentry.writing.minimize), 69

get_dependent_actions() (in module pol-
icy_sentry.querying.actions), 62

get_full_action_name() (in module pol-
icy_sentry.util.actions), 73

get_lowercase_action_list() (in module pol-
icy_sentry.util.actions), 73

get_partition_from_arn() (in module pol-
icy_sentry.util.arns), 72

get_raw_arns_for_service() (in module pol-
icy_sentry.querying.arns), 64

get_region_from_arn() (in module pol-
icy_sentry.util.arns), 72

get_rendered_policy() (pol-
icy_sentry.writing.sid_group.SidGroup
method), 66

get_resource_from_arn() (in module pol-
icy_sentry.util.arns), 72

get_resource_path_from_arn() (in module
policy_sentry.util.arns), 72

get_resource_type_name_with_raw_arn()
(in module policy_sentry.querying.arns), 64

get_service_from_action() (in module pol-

icy_sentry.util.actions), 73
get_service_from_arn() (in module pol-

icy_sentry.util.arns), 72
get_sid() (policy_sentry.writing.sid_group.SidGroup

method), 66
get_sid_group() (pol-

icy_sentry.writing.sid_group.SidGroup
method), 67

get_universal_conditions() (pol-
icy_sentry.writing.sid_group.SidGroup
method), 67

L
list_files_in_directory() (in module pol-

icy_sentry.util.file), 73
list_sids() (policy_sentry.writing.sid_group.SidGroup

method), 67

M
minimize_statement_actions() (in module

policy_sentry.writing.minimize), 69

P
parse_arn() (in module policy_sentry.util.arns), 72
policy_sentry.analysis.analyze (module),

69
policy_sentry.command.write_policy (mod-

ule), 65
policy_sentry.querying.actions (module),

60
policy_sentry.querying.all (module), 60
policy_sentry.querying.arns (module), 63
policy_sentry.querying.conditions (mod-

ule), 64
policy_sentry.util.actions (module), 73
policy_sentry.util.arns (module), 72
policy_sentry.util.file (module), 73
policy_sentry.util.policy_files (module),

71
policy_sentry.writing.minimize (module),

68
policy_sentry.writing.sid_group (module),

65
policy_sentry.writing.template (module),

68
policy_sentry.writing.validate (module),

68
process_template() (pol-

icy_sentry.writing.sid_group.SidGroup
method), 67

R
read_risky_iam_permissions_text_file()

(in module policy_sentry.analysis.analyze), 71

88 Index



policy𝑠𝑒𝑛𝑡𝑟𝑦

read_this_file() (in module pol-
icy_sentry.util.file), 73

read_yaml_file() (in module pol-
icy_sentry.util.file), 73

remove_actions_duplicated_in_wildcard_arn()
(policy_sentry.writing.sid_group.SidGroup
method), 67

remove_actions_not_matching_access_level()
(in module policy_sentry.querying.actions), 63

remove_actions_not_matching_these()
(policy_sentry.writing.sid_group.SidGroup
method), 67

remove_actions_that_are_not_wildcard_arn_only()
(in module policy_sentry.querying.actions), 63

remove_actions_that_are_not_wildcard_arn_only()
(in module policy_sentry.writing.sid_group),
68

remove_sids_with_empty_action_lists()
(policy_sentry.writing.sid_group.SidGroup
method), 67

S
SidGroup (class in policy_sentry.writing.sid_group), 65

V
validate_condition_block() (in module pol-

icy_sentry.writing.validate), 68

W
write_json_file() (in module pol-

icy_sentry.util.file), 73
write_policy_with_template() (in module

policy_sentry.command.write_policy), 65

Index 89


	Overview
	Comparison to other tools
	Installation
	Command cheat sheet
	Writing IAM Policies
	Querying the IAM Policy Database
	Docker
	Initialization (Optional)
	Terraform Demo
	Terraform Modules
	Contributing
	Library Usage
	Implementation Strategy
	IAM Policies
	Minimization
	Indices and tables
	Python Module Index
	Index

