

Policy Sentry Documentation

Policy Sentry [https://github.com/salesforce/policy_sentry] is an AWS IAM Least Privilege Policy Generator, auditor, and analysis database. It compiles database tables based on the AWS IAM Documentation on Actions, Resources, and Condition Keys [https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html] and leverages that data to create least-privilege IAM policies.

Organizations can use Policy Sentry to:

	Limit the blast radius in the event of a breach: If an attacker gains access to user credentials or Instance Profile credentials, access levels and resource access should be limited to the least amount needed to function. This can help avoid situations such as the Capital One breach, where after an SSRF attack, data was accessible from the compromised instance because the role allowed access to all S3 buckets in the account. In this case, Policy Sentry would only allow the role access to the buckets necessary to perform its duties.

	Scale creation of secure IAM Policies: Rather than dedicating specialized and talented human resources to manual IAM reviews and creating IAM policies by hand, organizations can leverage Policy Sentry to write the policies for them in an automated fashion.

Policy Sentry’s policy writing templates are expressed in YAML and include the following:

	Name and Justification for why the privileges are needed

	CRUD levels (Read/Write/List/Tagging/Permissions management)

	Amazon Resource Names (ARNs), so the resulting policy only points to specific resources and does not grant access to * resources.

Policy Sentry can also be used to:

	Query the IAM database [https://policy-sentry.readthedocs.io/en/latest/user-guide/querying-the-database.html] to reduce manual search time

	Generate IAM Policies based on Terraform output [https://policy-sentry.readthedocs.io/en/latest/terraform/terraform-demo.html]

	Write least-privilege IAM Policies [https://policy-sentry.readthedocs.io/en/latest/user-guide/write-policy.html] based on a list of IAM actions (or CRUD levels)

Navigate below to get started with Policy Sentry!

Introduction

	Overview

User Guide

	Installation
	Shell completion

	Docker
	Building the Docker Image

	Using the Docker Image

	Rebuilding the IAM Database
	Initialize

	Writing IAM Policies
	CRUD Mode
	Command options

	Instructions

	Wildcard-only section

	Actions Mode
	Command options

	Instructions

	CRUD Mode Examples
	Example 1: Basic CRUD

	Example 2: Skipping Resource Constraints

	Example 3: Wildcard-only - Single Actions

	Example 4: Wildcard only - Bulk Selection Service-Wide

	Querying the IAM Database
	Action table
	Options

	ARN Table
	Options

	Condition Table
	Options

	Terraform
	Prerequisites

	Note

	Example

	Cheat sheet
	Commands

	Policy Writing Commands

	IAM Database Query Commands

	Initialization (Optional)

Contributing

	Contributing
	Contributing to Documentation

	IAM Database

	Testing

	Project Structure

	Versioning

	Roadmap

Library Usage

	Library Usage
	Getting Started with the Library

	Examples
	Querying the IAM Database

	Writing Policies

	Analyzing Policies

	Module Reference
	Querying

	Writing

	Analyzing

	Utilities

Appendix

	Appendices

Indices and tables

	Module Index

Overview

Motivation

Writing security-conscious IAM Policies by hand can be very tedious and inefficient. Many Infrastructure as Code developers have experienced something like this:

	Determined to make your best effort to give users and roles the least amount of privilege you need to perform your duties, you spend way too much time combing through the AWS IAM Documentation on Actions, Resources, and Condition Keys for AWS Services [https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html].

	Your team lead encourages you to build security into your IAM Policies for product quality, but eventually you get frustrated due to project deadlines.

	You don’t have an embedded security person on your team who can write those IAM policies for you, and there’s no automated tool that will automagically sense the AWS API calls that you perform and then write them for you in a least-privilege manner.

	After fantasizing about that level of automation, you realize that writing least privilege IAM Policies, seemingly out of charity, will jeopardize your ability to finish your code in time to meet project deadlines.

	You use Managed Policies (because hey, why not) or you eyeball the names of the API calls and use wildcards instead so you can move on with your life.

Such a process is not ideal for security or for Infrastructure as Code developers. We need to make it easier to write IAM Policies securely and abstract the complexity of writing least-privilege IAM policies. That’s why I made this tool.

Authoring Secure IAM Policies

Policy Sentry’s flagship feature is that it can create IAM policies based on resource ARNs and access levels. Our CRUD functionality takes the opinionated approach that IAC developers shouldn’t have to understand the complexities of AWS IAM - we should abstract the complexity for them. In fact, developers should just be able to say…

	“I need Read/Write/List access to arn:aws:s3:::example-org-sbx-vmimport”

	“I need Permissions Management access to arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret”

	“I need Tagging access to arn:aws:ssm:us-east-1:123456789012:parameter/test”

…and our automation should create policies that correspond to those access levels.

How do we accomplish this? Well, Policy Sentry leverages the AWS documentation on Actions, Resources, and Condition Keys documentation to look up the actions, access levels, and resource types, and generates policies according to the ARNs and access levels. Consider the table snippet below:

	Actions

	Access Level

	Resource Types

	ssm:GetParameter

	Read

	parameter

	ssm:DescribeParameters

	List

	parameter

	ssm:PutParameter

	Write

	parameter

	secretsmanager:PutResourcePolicy

	Permissions management

	secret

	secretsmanager:TagResource

	Tagging

	secret

Policy Sentry aggregates all of that documentation into a single database and uses that database to generate policies according to actions, resources, and access levels.

To get started, install Policy Sentry:

pip3 install --user policy_sentry

Then initialize the IAM database:

policy_sentry initialize

To generate a policy according to resources and access levels, start by creating a template with this command so you can just fill out the ARNs:

policy_sentry create-template --output-file crud.yml --template-type crud

It will generate a file like this:

mode: crud
name: myRole
description: '' # Insert description
role_arn: '' # Insert the ARN of the role that will use this
read:
- '' # Insert ARNs for Read access
write:
- '' # Insert ARNs...
list:
- '' # Insert ARNs...
tagging:
- '' # Insert ARNs...
permissions-management:
- '' # Insert ARNs...

Then just fill it out:

mode: crud
name: myRole
description: 'Justification for privileges'
role_arn: 'arn:aws:iam::123456789102:role/myRole'
read:
- 'arn:aws:ssm:us-east-1:123456789012:parameter/myparameter'
write:
- 'arn:aws:ssm:us-east-1:123456789012:parameter/myparameter'
list:
- 'arn:aws:ssm:us-east-1:123456789012:parameter/myparameter'
tagging:
- 'arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret'
permissions-management:
- 'arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret'

Then run this command:

policy_sentry write-policy --input-file crud.yml

It will generate these results:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "SsmReadParameter",
 "Effect": "Allow",
 "Action": [
 "ssm:getparameter",
 "ssm:getparameterhistory",
 "ssm:getparameters",
 "ssm:getparametersbypath",
 "ssm:listtagsforresource"
],
 "Resource": [
 "arn:aws:ssm:us-east-1:123456789012:parameter/myparameter"
]
 },
 {
 "Sid": "SsmWriteParameter",
 "Effect": "Allow",
 "Action": [
 "ssm:deleteparameter",
 "ssm:deleteparameters",
 "ssm:putparameter",
 "ssm:labelparameterversion"
],
 "Resource": [
 "arn:aws:ssm:us-east-1:123456789012:parameter/myparameter"
]
 },
 {
 "Sid": "SecretsmanagerPermissionsmanagementSecret",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:deleteresourcepolicy",
 "secretsmanager:putresourcepolicy"
],
 "Resource": [
 "arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret"
]
 },
 {
 "Sid": "SecretsmanagerTaggingSecret",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:tagresource",
 "secretsmanager:untagresource"
],
 "Resource": [
 "arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret"
]
 }
]
}

Notice how the policy above recognizes the ARNs that the user supplies, along with the requested access level. For instance, the SID “SecretsmanagerTaggingSecret” contains Tagging actions that are assigned to the secret resource type only.

This rapidly speeds up the time to develop IAM policies, and ensures that all policies created limit access to exactly what your role needs access to. This way, developers only have to determine the resources that they need to access, and we abstract the complexity of IAM policies away from their development processes.

Installation

	Policy Sentry is available via pip. To install, run:

pip3 install --user policy_sentry

Shell completion

To enable Bash completion, put this in your .bashrc:

eval "$(_POLICY_SENTRY_COMPLETE=source policy_sentry)"

To enable ZSH completion, put this in your .zshrc:

eval "$(_POLICY_SENTRY_COMPLETE=source_zsh policy_sentry)"

Usage

	create-template: Creates the YML file templates for use in the write-policy command types.

	write-policy: Leverage a YAML file to write policies for you

	Option 1: Specify CRUD levels (Read, Write, List, Tagging, or Permissions management) and the ARN of the resource. It will write this for you. See the documentation on CRUD mode [https://policy-sentry.readthedocs.io/en/latest/user-guide/write-policy.html#crud-mode-arns-and-access-levels]

	Option 2: Specify a list of actions. It will write the IAM Policy for you, but you will have to fill in the ARNs. See the documentation on Action Mode [https://policy-sentry.readthedocs.io/en/latest/user-guide/write-policy.html#actions-mode-lists-of-iam-actions].

	query: Query the IAM database tables. This can help when filling out the Policy Sentry templates, or just querying the database for quick knowledge.
- Option 1: Query the Actions Table (action-table)
- Option 2: Query the ARNs Table (arn-table)
- Option 3: Query the Conditions Table (condition-table)

	initialize: (Optional) Create a SQLite database that contains all of the services available through the Actions, Resources, and Condition Keys documentation [https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html]. See the documentation [https://policy-sentry.readthedocs.io/en/latest/user-guide/initialize.html].

Installation

	policy_sentry is available via pip (Python 3 only). To install, run:

pip3 install --user policy_sentry

Shell completion

To enable Bash completion, put this in your .bashrc:

eval "$(_POLICY_SENTRY_COMPLETE=source policy_sentry)"

To enable ZSH completion, put this in your .zshrc:

eval "$(_POLICY_SENTRY_COMPLETE=source_zsh policy_sentry)"

Docker

Building the Docker Image

If you prefer using Docker instead of installing the script with Python, we support that as well.

Use this to build the docker image:

docker build -t kmcquade/policy_sentry .

Using the Docker Image

Use this to run some basic commands:

Basic commands with no arguments
docker run -i --rm kmcquade/policy_sentry:latest "--help"
docker run -i --rm kmcquade/policy_sentry:latest "query"

Query the database
docker run -i --rm kmcquade/policy_sentry:latest "query action-table --service all --access-level permissions-management"

The write-policy command also supports passing in the YML config via STDIN. Try it out here:

Write policies by passing in the config via STDIN
cat examples/yml/crud.yml | docker run -i --rm kmcquade/policy_sentry:latest "write-policy"
cat examples/yml/actions.yml | docker run -i --rm kmcquade/policy_sentry:latest "write-policy"

Rebuilding the IAM Database

Initialize

initialize: This will create a SQLite database that contains all of the services available through the Actions, Resources, and Condition Keys documentation [https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html].

Note: This step is now optional. Typical use cases for running the initialize command are:
* If you want to run –fetch and build the latest database from the AWS Docs. This is good if you want to try out the latest cool services.
* If you want to verify the database contents on your own.
* If you want to build the SQLite database from the raw HTML files, rather than copying it from the package.

The database is stored in $HOME/.policy_sentry/aws.sqlite3.

The database is generated based on the HTML files stored in the policy_sentry/shared/data/docs/ directory.

Options

	--access-level-overrides-file (Optional): Path to your own custom access level overrides file, used to override the Access Levels per action provided by AWS docs. The default one is here [https://github.com/salesforce/policy_sentry/blob/master/policy_sentry/shared/data/access-level-overrides.yml].

	--fetch (Optional): Specify this flag to fetch the HTML Docs directly from the AWS website. This will be helpful if the docs in the Git repository are behind the live docs and you need to use the latest version of the docs right now.

	--build (Optional) Build the SQLite database from the HTML files rather than copying the SQLite database file from the python package. Defaults to false.

Usage

Initialize the database, using the existing Access Level Overrides file
policy_sentry initialize

Fetch the most recent version of the AWS documentation so you can experiment with new services.
This can be helpful in case the AWS HTML files in the Python package are outdated, even if it is a week old
policy_sentry initialize --fetch

Build the database file from the HTML files rather than using the bundled binary.
policy_sentry initialize --build

Initialize the database with a custom Access Level Overrides file

policy_sentry initialize --access-level-overrides-file ~/.policy_sentry/access-level-overrides.yml
policy_sentry initialize --access-level-overrides-file ~/.policy_sentry/overrides-resource-policies.yml

Skipping Initialization

When using Policy Sentry manually, you have to build a local database file with the initialize function.

However, if you are developing your own Python code and you want to import Policy Sentry as a third party package, you can skip the initialization and leverage the local database file that is bundled with the Python package itself.

This is especially useful for developers who wish to leverage Policy Sentry’s capabilities that require the use of the IAM database (such as querying the IAM database table). This way, you don’t have to initialize the database and can just query it immediately.

Writing IAM Policies

Writing IAM Policies

	CRUD Mode
	Command options

	Instructions

	Wildcard-only section

	Actions Mode
	Command options

	Instructions

	CRUD Mode Examples
	Example 1: Basic CRUD

	Example 2: Skipping Resource Constraints

	Example 3: Wildcard-only - Single Actions

	Example 4: Wildcard only - Bulk Selection Service-Wide

CRUD Mode

	TLDR: Building IAM policies with resource constraints and access levels.

This is the flagship feature of this tool. You can just specify the CRUD levels (Read, Write, List, Tagging, or Permissions management) for each action in a
YAML File. The policy will be generated for you. You might need to fiddle with the results for your use in Terraform, but it significantly reduces the level of effort to build least privilege into your policies.

Command options

	--input-file: YAML file containing the CRUD levels + Resource ARNs. Required.

	--minimize: Whether or not to minimize the resulting statement with safe usage of wildcards to reduce policy length. Set this to the character length you want. This can be extended for readability. I suggest setting it to 0.

	-v: Set the logging level. Choices are critical, error, warning, info, or debug. Defaults to info

Example:

policy_sentry write-policy --input-file examples/crud.yml

Instructions

	To generate a policy according to resources and access levels, start by creating a template with this command so you can just fill out the ARNs:

policy_sentry create-template --output-file crud.yml --template-type crud

	It will generate a file like this:

mode: crud
name: myRole
Specify resource ARNs
read:
- ''
write:
- ''
list:
- ''
tagging:
- ''
permissions-management:
- ''
Actions that do not support resource constraints
wildcard-only:
 single-actions: # standalone actions
 - ''
 # Service-wide, per access level - like 's3' or 'ec2'
 service-read:
 - ''
 service-write:
 - ''
 service-list:
 - ''
 service-tagging:
 - ''
 service-permissions-management:
 - ''

	Then just fill it out:

mode: crud
name: myRole
description: 'Justification for privileges'
role_arn: 'arn:aws:iam::123456789102:role/myRole'
read:
- 'arn:aws:ssm:us-east-1:123456789012:parameter/myparameter'
write:
- 'arn:aws:ssm:us-east-1:123456789012:parameter/myparameter'
list:
- 'arn:aws:ssm:us-east-1:123456789012:parameter/myparameter'
tagging:
- 'arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret'
permissions-management:
- 'arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret'

	Run the command:

policy_sentry write-policy --input-file crud.yml

	It will generate an IAM Policy containing an IAM policy with the actions restricted to the ARNs specified above.

	The resulting policy (without the --minimize command) will look like this:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "SsmReadParameter",
 "Effect": "Allow",
 "Action": [
 "ssm:getparameter",
 "ssm:getparameterhistory",
 "ssm:getparameters",
 "ssm:getparametersbypath",
 "ssm:listtagsforresource"
],
 "Resource": [
 "arn:aws:ssm:us-east-1:123456789012:parameter/myparameter"
]
 },
 {
 "Sid": "SsmWriteParameter",
 "Effect": "Allow",
 "Action": [
 "ssm:deleteparameter",
 "ssm:deleteparameters",
 "ssm:putparameter",
 "ssm:labelparameterversion"
],
 "Resource": [
 "arn:aws:ssm:us-east-1:123456789012:parameter/myparameter"
]
 },
 {
 "Sid": "SecretsmanagerPermissionsmanagementSecret",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:deleteresourcepolicy",
 "secretsmanager:putresourcepolicy"
],
 "Resource": [
 "arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret"
]
 },
 {
 "Sid": "SecretsmanagerTaggingSecret",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:tagresource",
 "secretsmanager:untagresource"
],
 "Resource": [
 "arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret"
]
 }
]
}

Wildcard-only section

You’ll notice that as of release 0.7.1, there is a new section for wildcard-only:

mode: crud
name: myRole
Specify resource ARNs
read:
- ''
Actions that do not support resource constraints
wildcard-only:
 single-actions: # standalone actions
 - ''
 # Service-wide, per access level - like 's3' or 'ec2'
 service-read:
 - ''
 service-write:
 - ''
 service-list:
 - ''
 service-tagging:
 - ''
 service-permissions-management:
 - ''

The wildcard-only section is meant to hold IAM actions that do not support resource constraints. Most IAM actions do support resource constraints - for instance, s3:GetObject can be restricted according to a specific object or path within an S3 bucket ARN , like arn:aws:s3:::mybucket/path/*. However, some IAM actions do not support resource constraints.

Example

For example, run a query against the IAM database to determine “which S3 actions at the LIST access level do not support resource constraints”:

policy_sentry query action-table --service s3 --access-level list --wildcard-only

The output will be:

Similarly, S3 has a few actions that at the “Read” access level that do not support resource constraints. Run this query against the IAM database to discover those actions:

policy_sentry query action-table --service s3 --access-level read --wildcard-only

The output will be:

s3 READ actions that must use wildcards in the resources block:
[
 "s3:GetAccessPoint",
 "s3:GetAccountPublicAccessBlock",
 "s3:ListAccessPoints"
]

Basic support for Wildcard-only Actions

As you can see from the previous example, there are definitely valid use cases for providing access to IAM Actions that do not support resource constraints (i.e., where the Action must be set to Resource=*).

Single IAM Actions

Previous to version 0.7.1, the user still had to provide specific IAM actions in that section. That is still supported, using the single-actions array under the wildcard-only map, as shown in the example crud.yml below.

mode: crud
name: myRole
wildcard-only:
 single-actions:
 - 's3:ListAllMyBuckets'

The resulting policy would look like this:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "MultMultNone",
 "Effect": "Allow",
 "Action": [
 "s3:ListAllMyBuckets"
],
 "Resource": [
 "*"
]
 }
]
}

And what’s really cool about that - if the user tries to bypass it by supplying an action that supports resource constraints (like secretsmanager:DeleteSecret), Policy Sentry will ignore the user’s request. Consider a file titled crud.yml with the contents below:

mode: crud
name: myRole
wildcard-only:
 single-actions:
 - 's3:ListAllMyBuckets'
 - 'secretsmanager:DeleteSecret' # Policy Sentry will ignore this!

Now run the command:

policy_sentry write-policy crud.yml

Notice how the output does not include secretsmanager:DeleteSecret:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "MultMultNone",
 "Effect": "Allow",
 "Action": [
 "s3:ListAllMyBuckets"
],
 "Resource": [
 "*"
]
 }
]
}

CRUD-based support for Wildcard-only Actions

That previous example is very cool - but it’s not terribly fast for users to have to run the CLI queries. We decided that it should be even easier than this. If you’re using the Terraform module [https://github.com/kmcquade/terraform-aws-policy-sentry], then you should never, ever have to query the IAM database.

Now bear witness to the latest feature addition to Policy Sentry: wildcard-only, CRUD-based, service-specific actions.

mode: crud
wildcard-only:
 service-read:
 - ecr # This will add ecr:GetAuthorizationToken to the policy
 - s3 # This adds s3:GetAccessPoint, s3:GetAccountPublicAccessBlock, s3:ListAccessPoints

As shown above, the input only required the user to supply s3 and ecr under the service-read array in the wildcard-only map.

Now run the command:

policy_sentry write-policy crud.yml

Notice how the output includes wildcard-only actions at the read access level for the ecr and s3 services:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "MultMultNone",
 "Effect": "Allow",
 "Action": [
 "ecr:GetAuthorizationToken",
 "s3:GetAccessPoint",
 "s3:GetAccountPublicAccessBlock",
 "s3:ListAccessPoints"
],
 "Resource": [
 "*"
]
 }
]
}

Combining approaches

Here’s a slightly more complex policy. See the input file crud.yml below:

mode: crud
read:
- arn:aws:s3:::example-org-s3-access-logs
wildcard-only:
 service-read:
 - ecr # This will add ecr:GetAuthorizationToken to the policy
 - s3 # This adds s3:GetAccessPoint, s3:GetAccountPublicAccessBlock, s3:ListAccessPoints

After running the command:

policy_sentry write-policy crud.yml

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "MultMultNone",
 "Effect": "Allow",
 "Action": [
 "ecr:GetAuthorizationToken",
 "s3:GetAccessPoint",
 "s3:GetAccountPublicAccessBlock",
 "s3:ListAccessPoints"
],
 "Resource": [
 "*"
]
 },
 {
 "Sid": "S3PermissionsmanagementBucket",
 "Effect": "Allow",
 "Action": [
 "s3:DeleteBucketPolicy",
 "s3:PutBucketAcl",
 "s3:PutBucketPolicy",
 "s3:PutBucketPublicAccessBlock"
],
 "Resource": [
 "arn:aws:s3:::example-org-s3-access-logs"
]
 }
]
}

And yes, it’s all available in the Terraform module :)

Actions Mode

	TLDR: Supply a list of actions in a YAML file and generate the policy accordingly.

Command options

	--input-file: YAML file containing the list of actions

	--minimize: Whether or not to minimize the resulting statement with safe usage of wildcards to reduce policy length. Set this to the character lengh you want - for example, 4

	-v: Set the logging level. Choices are critical, error, warning, info, or debug. Defaults to info

Example:

policy_sentry write-policy --input-file examples/actions.yml

Instructions

	If you already know the IAM actions, you can just run this command to create a template to fill out:

policy_sentry create-template --output-file actions.yml --template-type actions

	It will generate a file with contents like this:

mode: actions
name: myRole
description: '' # Insert value here
role_arn: '' # Insert value here
actions:
- '' # Fill in your IAM actions here

	Create a yaml file with the following contents:

mode: actions
name: 'RoleNameWithActions'
description: 'Justification for privileges' # for auditability
role_arn: 'arn:aws:iam::123456789102:role/myRole' # for auditability
actions:
- kms:CreateGrant
- kms:CreateCustomKeyStore
- ec2:AuthorizeSecurityGroupEgress
- ec2:AuthorizeSecurityGroupIngress

	Then run this command:

policy_sentry write-policy --input-file actions.yml

	The output will look like this:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "KmsPermissionsmanagementKey",
 "Effect": "Allow",
 "Action": [
 "kms:creategrant"
],
 "Resource": [
 "arn:aws:kms:${Region}:${Account}:key/${KeyId}"
]
 },
 {
 "Sid": "Ec2WriteSecuritygroup",
 "Effect": "Allow",
 "Action": [
 "ec2:authorizesecuritygroupegress",
 "ec2:authorizesecuritygroupingress"
],
 "Resource": [
 "arn:aws:ec2:${Region}:${Account}:security-group/${SecurityGroupId}"
]
 },
 {
 "Sid": "MultMultNone",
 "Effect": "Allow",
 "Action": [
 "kms:createcustomkeystore",
 "cloudhsm:describeclusters"
],
 "Resource": [
 "*"
]
 }
]
}

CRUD Mode Examples

This will show valid template inputs and their outputs for CRUD mode. CRUD mode may appear to be complicated, but in reality it is quite simple. This page will avoid being overly explanatory and will just show the input and output as a reference.

Example 1: Basic CRUD

The basic CRUD mode gives you actions at the specified access level, constrained to the specific resource ARNs supplied.

Input:

mode: crud
read:
- 'arn:aws:ssm:us-east-1:123456789012:parameter/myparameter'

Output:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "SsmReadParameter",
 "Effect": "Allow",
 "Action": [
 "ssm:GetParameter",
 "ssm:GetParameterHistory",
 "ssm:GetParameters",
 "ssm:GetParametersByPath",
 "ssm:ListTagsForResource"
],
 "Resource": [
 "arn:aws:ssm:us-east-1:123456789012:parameter/myparameter"
]
 }
]
}

Example 2: Skipping Resource Constraints

In basic CRUD mode, Policy Sentry forces you to use resource constraints, but perhaps you do want to allow kms:Decrypt to * and there are mitigating circumstances that mean it is not a security risk to your organization. For example - let’s say that given the context of your organization and its AWS security strategy, you can’t know the KMS Key Alias or Key ID beforehand. However, all of the KMS keys are tightly controlled via resource based policies and provisioned via Terraform/Cloudformation, therefore kms:Decrypt is ok. And in order to use Policy Sentry you’d need a way to handle exceptions/overrides.

The skip-resource-constraints section allows you to do this.

We avoid abuse by requiring that if you list actions under the skip-resource-constraints section, then you should have to list the actions out individually (I.e., don’t allow S3:*)

Input:

mode: crud
skip-resource-constraints:
- s3:GetObject
- s3:PutObject
- ssm:GetParameter
- ssm:GetParameters

Output:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "SkipResourceConstraints",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "ssm:GetParameter",
 "ssm:GetParameters"
],
 "Resource": [
 "*"
]
 }
]
}

Example 3: Wildcard-only - Single Actions

This is for actions that do not support resource ARN constraints, such as secretsmanager:CreateSecret.

Input:

mode: crud
wildcard-only:
 single-actions:
 - secretsmanager:CreateSecret

Output:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "MultMultNone",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:CreateSecret"
],
 "Resource": [
 "*"
]
 }
]
}

Example 4: Wildcard only - Bulk Selection Service-Wide

As mentioned before, there are some actions that do not support resource constraints - but all of those actions have access levels. You can use this strategy to “bulk select” wildcard-only actions at different access levels. It improves the user experience so you don’t have to actually know the details of individual IAM Actions, just the service prefixes and access levels.

Input:

mode: crud
wildcard-only:
 service-list:
 - s3

Output:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "MultMultNone",
 "Effect": "Allow",
 "Action": [
 "s3:ListAllMyBuckets"
],
 "Resource": [
 "*"
]
 }
]
}

Querying the IAM Database

Policy Sentry relies on a SQLite database that contains all of the data from the Actions, Resources, and Condition Keys documentation [https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html] hosted by AWS.

Policy Sentry supports querying that database through the CLI. This can help with writing policies and generally knowing what values to supply in your policies.

Querying the IAM Database

	Action table
	Options

	ARN Table
	Options

	Condition Table
	Options

Action table

NOTE: Use --fmt yaml or --fmt json to change the output format. Defaults to json for querying

Get a list of actions that do not support resource constraints
policy_sentry query action-table --service s3 --wildcard-only --fmt yaml

Get a list of actions at the "Read" level in S3 that do not support resource constraints
policy_sentry query action-table --service s3 --access-level read --wildcard-only --fmt yaml

Get a list of all IAM Actions available to the RAM service
policy_sentry query action-table --service ram

Get details about the `ram:TagResource` IAM Action
policy_sentry query action-table --service ram --name tagresource

Get a list of all IAM actions under the RAM service that have the Permissions management access level.
policy_sentry query action-table --service ram --access-level permissions-management

Get a list of all IAM actions under the SES service that support the `ses:FeedbackAddress` condition key.
policy_sentry query action-table --service ses --condition ses:FeedbackAddress

Options

Usage: policy_sentry query action-table [OPTIONS]

Options:
 --service TEXT Filter according to AWS service. [required]
 --name TEXT The name of IAM Action. For example, if the
 action is "iam:ListUsers", supply
 "ListUsers" here.
 --access-level [read|write|list|tagging|permissions-management]
 If action table is chosen, you can use this
 to filter according to CRUD levels.
 Acceptable values are read, write, list,
 tagging, permissions-management
 --condition TEXT If action table is chosen, you can supply a
 condition key to show a list of all IAM
 actions that support the condition key.
 --wildcard-only If action table is chosen, show the IAM
 actions that only support wildcard resources
 - i.e., cannot support ARNs in the resource
 block.
 --fmt [yaml|json] Format output as YAML or JSON. Defaults to
 "yaml"
 --v Set the logging level. Choices are CRITICAL, ERROR, WARNING, INFO, or DEBUG. Defaults to INFO
 --help Show this message and exit.

ARN Table

Get a list of all RAW ARN formats available through the SSM service.
policy_sentry query arn-table --service ssm

Get the raw ARN format for the `cloud9` ARN with the short name `environment`
policy_sentry query arn-table --service cloud9 --name environment

Get key/value pairs of all RAW ARN formats plus their short names
policy_sentry query arn-table --service cloud9 --list-arn-types

Options

Usage: policy_sentry query arn-table [OPTIONS]

 Query the ARN Table from the Policy Sentry database

Options:
 --service TEXT Filter according to AWS service. [required]
 --name TEXT The short name of the resource ARN type. For example,
 `bucket` under service `s3`.
 --list-arn-types Show the short names of ARN Types. If empty, this will
 show RAW ARNs only.
 --fmt [yaml|json] Format output as YAML or JSON. Defaults to "yaml"
 -v, LVL Either CRITICAL, ERROR, WARNING, INFO or DEBUG
 --help Show this message and exit.

Condition Table

Get a list of all condition keys available to the Cloud9 service
policy_sentry query condition-table --service cloud9

Get details on the condition key titled `cloud9:Permissions`
policy_sentry query condition-table --service cloud9 --name cloud9:Permissions

Options

Usage: policy_sentry query condition-table [OPTIONS]

 Query the condition keys table from the Policy Sentry database

Options:
 --name TEXT Get details on a specific condition key. Leave this blank
 to get a list of all condition keys available to the
 service.
 --service TEXT Filter according to AWS service. [required]
 --fmt [yaml|json] Format output as YAML or JSON. Defaults to "yaml"
 -v, LVL Either CRITICAL, ERROR, WARNING, INFO or DEBUG
 --help Show this message and exit.

Terraform

The Terraform module is published here [https://github.com/kmcquade/terraform-aws-policy-sentry].

Prerequisites

	You must have Policy Sentry (at least version 0.7.0.2) installed beforehand and it must be executable from your $PATH. Installation instructions are here [https://policy-sentry.readthedocs.io/en/latest/user-guide/installation.html].

	You must have at least Terraform 0.12.8 installed.

Note

	Note: You will have to run terraform apply twice. This is because Policy Sentry has to create the template JSON file in the first run (executing python as part of the Terraform build), and it will create the actual IAM policy in the second run. While it is not as transparent as other Terraform modules in this way, it is still fairly transparent to the user.

Follow the rest of the demo for more context and details.

Example

	In your example directory, create a file titled main.tf with the following contents:

module "policy_sentry_demo" {
 source = "github.com/kmcquade/terraform-aws-policy-sentry"
 name = var.name
 read_access_level = var.read_access_level
 write_access_level = var.write_access_level
 list_access_level = var.list_access_level
 tagging_access_level = var.tagging_access_level
 permissions_management_access_level = var.permissions_management_access_level
 wildcard_only_actions = var.wildcard_only_actions
 minimize = var.minimize
}

	Create a file titled variables.tf with the following contents:

variable "name" {
 description = "The name of the rendered policy file (no file extension)."
 type = "string"
}

variable "create_policy" {
 description = "Set to true to create the actual IAM policies. Defaults to true."
 default = true
 type = bool
}

variable "read_access_level" {
 description = "Provide a list of Amazon Resource Names (ARNs) that your role needs READ access to."
 type = "list"
 default = [""]
}

variable "write_access_level" {
 description = "Provide a list of Amazon Resource Names (ARNs) that your role needs WRITE access to."
 type = "list"
 default = [""]
}

variable "list_access_level" {
 description = "Provide a list of Amazon Resource Names (ARNs) that your role needs LIST access to."
 type = "list"
 default = [""]
}

variable "tagging_access_level" {
 description = "Provide a list of Amazon Resource Names (ARNs) that your role needs TAGGING access to."
 type = "list"
 default = [""]
}

variable "permissions_management_access_level" {
 description = "Provide a list of Amazon Resource Names (ARNs) that your role needs PERMISSIONS MANAGEMENT access to."
 type = "list"
 default = [""]
}

variable "wildcard_only_actions" {
 description = "Only actions that do not support resource constraints"
 type = "list"
 default = [""]
}

variable "minimize" {
 description = "If set to true, it will minimize the size of the IAM Policy file. Defaults to false."
 default = false
 type = bool
}

	Then fill out the parameters appropriately in terraform.tfvars. Note that the name parameter will equal the name of your new IAM policy. list_access_level, read_access_level, etc. correspond to the values that you would normally pass in with the YML file in Policy Sentry.

name = "PolicySentryTest"

list_access_level = [
 "arn:aws:s3:::my-bucket",
 "arn:aws:s3:::my-other-bucket",
]
read_access_level = [
 "arn:aws:s3:::my-other-bucket",
]
write_access_level = [
 "arn:aws:kms:us-east-1:123456789012:key/shaq"
]

	Run terraform apply once to create the JSON policy file.

[image: ../../_images/dn80hE0.gif]

	Run terraform apply again to create the IAM policy

[image: ../../_images/ndIXTQb.gif]

	Don’t forget to cleanup

terraform destroy -auto-approve

Cheat sheet

Commands

	create-template: Creates the YML file templates for use in the write-policy command types.

	write-policy: Leverage a YAML file to write policies for you

	Option 1: CRUD Mode. Specify CRUD levels (Read, Write, List, Tagging, or Permissions management) and the ARN of the resource. It will write this for you. See the documentation for more details.

	Option 2: Actions Mode. Specify a list of actions. It will write the IAM Policy for you, but you will have to fill in the ARNs. See the documentation for more details.

	query: Query the IAM database tables. This can help when filling out the Policy Sentry templates, or just querying the database for quick knowledge.

	Option 1: Query the Actions Table (action-table)

	Option 2: Query the ARNs Table (arn-table)

	Option 3: Query the Conditions Table (condition-table)

	initialize: (Optional) Create a SQLite database that contains all of the services available through the Actions, Resources, and Condition Keys documentation [https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html]. See the documentation.

Policy Writing Commands

Create templates first!!! This way you can just paste the values you need rather than remembering the YAML format
CRUD mode
policy_sentry create-template --output-file tmp.yml --template-type crud
Actions mode
policy_sentry create-template --output-file tmp.yml --template-type actions

Get a list of actions that do not support resource constraints
policy_sentry query action-table --service s3 --wildcard-only --fmt yaml

Get a list of actions at the "Write" level in S3 that do not support resource constraints
policy_sentry query action-table --service s3 --access-level write --wildcard-only --fmt yaml

Initialize the policy_sentry config folder and create the IAM database tables.
policy_sentry initialize

Write policy based on resource-specific access levels
policy_sentry write-policy --input-file examples/yml/crud.yml

Write policy based on a list of actions
policy_sentry write-policy --input-file examples/yml/actions.yml

IAM Database Query Commands

	Query the Action table:

Get a list of all IAM actions across ALL services that have "Permissions management" access
policy_sentry query action-table --service all --access-level permissions-management

Get a list of all IAM Actions available to the RAM service
policy_sentry query action-table --service ram

Get details about the `ram:TagResource` IAM Action
policy_sentry query action-table --service ram --name tagresource

Get a list of all IAM actions under the RAM service that have the Permissions management access level.
policy_sentry query action-table --service ram --access-level permissions-management

Get a list of all IAM actions under the SES service that support the `ses:FeedbackAddress` condition key.
policy_sentry query action-table --service ses --condition ses:FeedbackAddress

	Query the ARN table:

Get a list of all RAW ARN formats available through the SSM service.
policy_sentry query arn-table --service ssm

Get the raw ARN format for the `cloud9` ARN with the short name `environment`
policy_sentry query arn-table --service cloud9 --name environment

Get key/value pairs of all RAW ARN formats plus their short names
policy_sentry query arn-table --service cloud9 --list-arn-types

	Query the Condition Keys table:

Get a list of all condition keys available to the Cloud9 service
policy_sentry query condition-table --service cloud9
Get details on the condition key titled `cloud9:Permissions`
policy_sentry query condition-table --service cloud9 --name cloud9:Permissions

Initialization (Optional)

Initialize the policy_sentry config folder and create the IAM database tables.
policy_sentry initialize

Fetch the most recent version of the AWS documentation so you can experiment with new services.
policy_sentry initialize --fetch

Override the Access Levels by specifying your own Access Levels (example:, correcting Permissions management levels)
policy_sentry initialize --access-level-overrides-file ~/.policy_sentry/access-level-overrides.yml
policy_sentry initialize --access-level-overrides-file ~/.policy_sentry/overrides-resource-policies.yml

Contributing

Want to contribute back to Policy Sentry? This page describes the general development
flow, our philosophy, the test suite, and issue tracking.

Impostor Syndrome Disclaimer

Before we get into the details: We want your help. No, really.

There may be a little voice inside your head that is telling you that you’re
not ready to be an open source contributor; that your skills aren’t nearly good
enough to contribute. What could you possibly offer a project like this one?

We assure you – the little voice in your head is wrong. If you can write code
at all, you can contribute code to open source. Contributing to open source
projects is a fantastic way to advance one’s coding skills. Writing perfect
code isn’t the measure of a good developer (that would disqualify all of us!);
it’s trying to create something, making mistakes, and learning from those
mistakes. That’s how we all improve.

We’ve provided some clear Contribution Guidelines that you can read here.
The guidelines outline the process that you’ll need to follow to get a patch
merged. By making expectations and process explicit, we hope it will make it
easier for you to contribute.

And you don’t just have to write code. You can help out by writing
documentation, tests, or even by giving feedback about this work. (And yes,
that includes giving feedback about the contribution guidelines.)

(Adrienne Friend [https://github.com/adriennefriend/imposter-syndrome-disclaimer] came up with this disclaimer language.)

Contents

	Contributing to Documentation
	Building Documentation

	Docstrings

	IAM Database
	How Policy Sentry uses the IAM database

	Testing
	Pipenv

	Invoke

	Local Unit Testing and Integration Testing: Quick and Easy

	Running the Test Suite

	Project Structure
	Subfolders

	Files and functions

	Versioning
	Version bumps

	Roadmap
	Condition Keys

	Log-based policy generation

Contributing to Documentation

If you’re looking to help document Policy Sentry, your first step is to get set up with Sphinx, our documentation tool. First you will want to make sure you have a few things on your local system:

	python-dev (if you’re on OS X, you already have this)

	pip

	pipenv

Once you’ve got all that, the rest is simple:

If you have a fork, you'll want to clone it instead
git clone git@github.com:salesforce/policy_sentry.git

Set up the Pipenv
pipenv install --skip-lock
pipenv shell

Enter the docs directory and compile
cd docs/
make html

View the file titled docs/_build/html/index.html in your browser

Building Documentation

Inside the docs directory, you can run make to build the documentation.
See make help for available options and the Sphinx Documentation [http://sphinx-doc.org/contents.html] for more information.

Docstrings

The comments under each Python Module are Docstrings. We use those to generate our documentation. See more information here: https://sphinx-rtd-tutorial.readthedocs.io/en/latest/build-the-docs.html#generating-documentation-from-docstrings.

Use the Google style for Docstrings, as shown here: http://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html#google-vs-numpy

	::

	
	def func(arg1, arg2):

	“”“Summary line.

Extended description of function.

	Args:

	arg1 (int): Description of arg1
arg2 (str): Description of arg2

	Returns:

	bool: Description of return value

“””
return True

IAM Database

Policy Sentry leverages HTML files from the Actions, Resources, and Condition Keys page [https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html] AWS documentation to build the IAM database.

	These HTML files are included as part of the PyPi package

	The database itself is

This design choice was made for a few reasons:

	Don’t break because of AWS: The automation must not break if the AWS website is down, or if AWS drastically changes the documentation.

	Replicability: Two git clones that build the SQLite database should always have the same results

	Easy to review: The repository itself should contain easy-to-understand and easy-to-view documentation, which the user can replicate, to verify with the human eye that no malicious changes have been made.

	This means no JSON files with complicated structures, or Binary files (the latter of which does not permit git diff) in the repository.

	This helps to mitigate the concern that open source software could be modified to alter IAM permissions at other organizations.

How Policy Sentry uses the IAM database

policy_sentry follows this process for generating policies.

	If the User-supplied actions template is provided:

	Look up the actions in our master Actions Table in the database, which contains the Action Tables for all AWS services

	If the action in the database matches the actions requested by the user, determine the ARN Format required.

	Proceed to step 3

	If User-supplied ARNs with Access levels template was provided:

	Match the user-supplied ARNs with ARN formats in our ARN Table database, which contains the ARN tables for all AWS Services

	If it matches, get the access level requested by the user

	Proceed to step 3

	Compile those into groups, sorted by an SID namespace. The SID namespace follows the format of Service, Access Level, and Resource ARN Type, with no character delimiter (to meet AWS IAM Policy formatting expectations). For example, the namespace could be SsmReadParameter, KmsReadKey, or Ec2TagInstance.

	Then, we associate the user-supplied ARNs matching that namespace with the SID.

	If User-supplied actions template was provided:

	Associate the IAM actions requested by the user to the service, access level, and ARN type matching the aforementioned SID namespace

	If the User-supplied ARNs with Access levels template was provided:

	Associate all the IAM actions that correspond to the service, access level, and ARN type matching that SID namespace.

	Print the policy

Updating the AWS HTML files

The command shown below downloads the Actions, Resources, and Condition Keys pages per-service to the policy_sentry/shared/data/docs folder.

	The HTML files will be stored in policy_sentry/shared/data/docs/list_*.partial.html

	It also add a file titled policy_sentry/shared/data/links.yml as well.

	It also builds a SQLite database file to include as part of the PyPi package.

This will update the HTML files stored in policy_sentry/shared/data/docs/list_*.partial.html:

pipenv shell
python3 ./utils/download_docs.py

This downloads the Actions, Resources, and Condition Keys pages per-service to the policy_sentry/shared/data/docs folder. It also add a file titled policy_sentry/shared/data/links.yml as well.

When a user runs policy_sentry initialize, these files are copied over to the config folder (~/.policy_sentry/).

This design choice was made for a few reasons:

	Don’t break because of AWS: The automation must not break if the AWS website is down, or if AWS drastically changes the documentation.

	Replicability: Two git clones that build the SQLite database should always have the same results

	
	Easy to review: The repository itself should contain easy-to-understand and easy-to-view documentation, which the user can replicate, to verify with the human eye that no malicious changes have been made.

	
	This means no JSON files with complicated structures, or Binary files (the latter of which does not permit git diff) in the repository.

	This helps to mitigate the concern that open source software could be modified to alter IAM permissions at other organizations.

Testing

Pipenv

pipenv --python 3.7 # create the environment
pipenv shell # start the environment
pipenv install # install both development and production dependencies

Invoke

To run and develop Policy Sentry without having to install from PyPi, you can use Invoke.

List available tasks
invoke -l

that will show the following options:
Available tasks:

 build.build-package Build the policy_sentry package from the current
 directory contents for use with PyPi
 build.install-package Install the policy_sentry package built from the
 current directory contents (not PyPi)
 build.uninstall-package Uninstall the policy_sentry package
 build.upload-prod Upload the package to the PyPi production server
 (requires credentials)
 build.upload-test Upload the package to the TestPyPi server
 (requires credentials)
 docs.make-html Make the HTML docs locally
 docs.open-html-docs Open HTML docs in Google Chrome locally on your
 computer
 docs.remove-html-files Remove the html files
 integration.analyze-policy Integration testing: Tests the `analyze`
 functionality
 integration.clean Runs `rm -rf $HOME/.policy_sentry`
 integration.initialize Integration testing: Initialize the
 policy_sentry database
 integration.query Integration testing: Tests the `query`
 functionality (querying the IAM database)
 integration.query-yaml Integration testing: Tests the `query`
 functionality (querying the IAM database) - but
 with yaml
 integration.version Print the version
 integration.write-policy Integration testing: Tests the `write-policy`
 function.
 test.lint Linting with `pylint` and `autopep8`
 test.security Runs `bandit` and `safety check`
 unit.nose Unit testing: Runs unit tests using `nosetests`
 unit.pytest Unit testing: Runs unit tests using `pytest`

To run them, specify `invoke` plus the options:
invoke build.build-package

invoke integration.clean
invoke integration.initialize
invoke integration.analyze-policy
invoke integration.query
invoke integration.write-policy

invoke test.lint
invoke test.security

invoke unit.nose

Local Unit Testing and Integration Testing: Quick and Easy

We highly suggest that you run all the tests before pushing a significant commit. It would be painful to copy/paste all of those lines above - so we’ve compiled a test script in the utils folder.

Just run this from the root of the repository:

./utils/run_tests.sh

It will execute all of the tests that would normally be run during the TravisCI build. If you want to see if it will pass TravisCI, you can just run that quick command on your machine.

Running the Test Suite

We use Nose [https://nose.readthedocs.io/en/latest/] for unit testing. All tests are placed in the tests folder.

	Just run the following:

nosetests -v

This will output the print() statements in your test code
nosetests -v --nocapture

This will include the debug logging statements in the test output
nosetests -v --logging-level=DEBUG

	Alternatively, you can use invoke, as mentioned above:

invoke unit.nose

Output:

test_overrides_yml_config: Tests the format of the overrides yml file for the RAM service ... ok
test_passing_overall_iam_action_override: Tests iam:CreateAccessKey ... ok
test_get_dependent_actions_double (test_actions.ActionsTestCase) ... ok
test_get_dependent_actions_several (test_actions.ActionsTestCase) ... ok
test_get_dependent_actions_single (test_actions.ActionsTestCase) ... ok
test_analyze_by_access_level: Test out calling this as a library ... ok
test_determine_risky_actions_from_list: Test comparing requested actions to a list of risky actions ... ok
test_get_actions_from_policy: Verify that the get_actions_from_policy function is grabbing the actions ... ok
test_get_actions_from_policy_file_with_explicit_actions: Verify that we can get a list of actions from a ... ok
test_get_actions_from_policy_file_with_wildcards: Verify that we can read the actions from a file, ... ok
test_remove_actions_not_matching_access_level: Verify remove_actions_not_matching_access_level is working as expected ... ok
test_get_findings: Ensure that finding.get_findings() combines two risk findings for one policy properly. ... ok
test_get_findings_by_policy_name: Testing out the 'Findings' object ... ok
test_add_s3_permissions_management_arn (test_arn_action_group.ArnActionGroupTestCase) ... ok
test_get_policy_elements (test_arn_action_group.ArnActionGroupTestCase) ... ok
test_update_actions_for_raw_arn_format (test_arn_action_group.ArnActionGroupTestCase) ... ok
test_does_arn_match_case_1 (test_arns.ArnsTestCase) ... ok
test_does_arn_match_case_2 (test_arns.ArnsTestCase) ... ok
test_does_arn_match_case_4 (test_arns.ArnsTestCase) ... ok
test_does_arn_match_case_5 (test_arns.ArnsTestCase) ... ok
test_does_arn_match_case_6 (test_arns.ArnsTestCase) ... ok
test_does_arn_match_case_bucket (test_arns.ArnsTestCase) ... ok
test_determine_actions_to_expand: provide expanded list of actions, like ecr:* ... ok
test_minimize_statement_actions (test_minimize_wildcard_actions.MinimizeWildcardActionsTestCase) ... ok
test_get_action_data: Tests function that gets details on a specific IAM Action. ... ok
test_get_actions_at_access_level_that_support_wildcard_arns_only: Test function that gets a list of ... ok
test_get_actions_for_service: Tests function that gets a list of actions per AWS service. ... ok
test_get_actions_matching_condition_crud_and_arn: Get a list of IAM Actions matching condition key, ... ok
test_get_actions_matching_condition_crud_and_wildcard_arn: Get a list of IAM Actions matching condition key ... ok
test_get_actions_matching_condition_key: Tests a function that gathers all instances in ... ok
test_get_actions_that_support_wildcard_arns_only: Tests function that shows all ... ok
test_get_actions_with_access_level: Tests function that gets a list of actions in a ... ok
test_get_actions_with_arn_type_and_access_level: Tests a function that gets a list of ... ok
test_get_all_actions_with_access_level: Get all actions with a given access level ... ok
test_get_arn_type_details: Tests function that grabs details about a specific ARN name ... ok
test_get_arn_types_for_service: Tests function that grabs arn_type and raw_arn pairs ... ok
test_get_condition_key_details: Tests function that grabs details about a specific condition key ... ok
test_get_condition_keys_for_service: Tests function that grabs a list of condition keys per service. ... ok
test_get_raw_arns_for_service: Tests function that grabs a list of raw ARNs per service ... ok
test_remove_actions_that_are_not_wildcard_arn_only: Tests function that removes actions from a list that ... ok
test_actions_template (test_template.TemplateTestCase) ... ok
test_crud_template (test_template.TemplateTestCase) ... ok
test_actions_schema: Validates that the user-supplied YAML is working for CRUD mode ... ok
test_actions_schema: Validates that the user-supplied YAML is working for CRUD mode ... ok
test_print_policy_with_actions_having_dependencies (test_write_policy.WritePolicyActionsTestCase) ... ok
test_write_policy (test_write_policy.WritePolicyCrudTestCase) ... ok
test_write_policy_beijing: Tests ARNs with the partiion `aws-cn` instead of just `aws` ... ok
test_write_policy_govcloud: Tests ARNs with the partition `aws-us-gov` instead of `aws` ... ok
test_wildcard_when_not_necessary: Attempts bypass of CRUD mode wildcard-only ... ok
test_write_actions_policy_with_library_only: Write an actions mode policy without using the command line at all (library only) ... ok
test_write_crud_policy_with_library_only: Write an actions mode policy without using the command line at all (library only) ... ok
test_actions_missing_actions: write-policy actions if the actions block is missing ... ok
test_allow_missing_access_level_categories_in_cfg: write-policy when the YAML file ... ok
test_allow_empty_access_level_categories_in_cfg: If the content of a list is an empty string, it should sysexit ... ok
test_actions_missing_arn: write-policy actions command when YAML file block is missing an ARN ... ok
test_actions_missing_description: write-policy when the YAML file is missing a description ... ok
test_actions_missing_name: write-policy when the YAML file is missing a name ... ok

Ran 57 tests in 2.694s

OK

Project Structure

We’ll focus mostly on the intent and approach of the major files (and subfolders) within the policy_sentry/shared directory:

Subfolders

Folders per command:

	The folders are mostly specific to their commands. For example, consider the files in the policy_sentry/analysis folder.

	
	The files in this folder are specific to the analyze command

	
	They all can import from the util folder and the shared folder.

	The files in this folder don’t import from other subfolders specific to other commands, like writing or downloading. (Note: There is an occasional exception here of re-using functions from the `querying` folder)

	Files in the analysis folder, to the analyze command. They don’t import from each other, with the occasional exception of re-using functions from the querying folder. They all import common methods from the util folder and the shared folder as well.

Files:

	shared/data/aws.sqlite3: This is the pre-bundled IAM database. Third party packages can easily query the pre-bundled IAM database by connecting to the database like this: ``

	shared/data/audit/*.txt: These text files are the pre-bundled audit files that you can use with the analyze-iam-policy command. Currently they are limited to privilege escalation and resource exposure. For more information, see the page on Analyzing IAM Policies.

	shared/data/docs/*.html: These are HTML files wget’d from the Actions, Resources, and Condition Keys AWS documentation. This is used to build our database.

	shared/data/access-level-overrides.yml: This is created to override the access levels that AWS incorrectly states in their documentation. For instance, quite often, their service teams will say that an IAM action is “Tagging” when it really should be “Write” - for example, secretsmanager:CreateSecret.

Files and functions

TODO: Generate documentation automagically based on docstrings

Versioning

We try to follow Semantic Versioning [https://semver.org/] as much as possible.

Version bumps

Just edit the policy_sentry/bin/policy_sentry file and update the __version__ variable:

#! /usr/bin/env python
"""
 policy_sentry is a tool for generating least-privilege IAM Policies.
"""
__version__ = '0.6.3' # EDIT THIS

The setup.py file will automatically pick up the new version from that file for the package info. The @click.version_option decorator will also pick that up for the command line.

Roadmap

Condition Keys

Currently, Condition Keys are not supported by this script. For an example, see the KMS key Condition Key Table here [https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awskeymanagementservice.html#awskeymanagementservice-policy-keys]. Note: The database does create a table of condition keys in case we develop future support for it, but it isn’t used yet.

Log-based policy generation

We are considering building functionality to:

	Use Amazon Athena to query CloudTrail logs from an S3 bucket for AWS IAM API calls, similar to CloudTracker [https://github.com/duo-labs/cloudtracker].

	
	Instead of identifying the exact AWS IAM actions that were used, as CloudTracker currently does, we identify:

	
	Resource ARNs

	Actions that indicate a CRUD level corresponding to that resource ARN. For example, if read access is granted to an S3 bucket folder path, assume all Read actions are needed for that folder path. Otherwise, we run into issues where CloudTrail actions and IAM actions don’t match, which is a well documented issue by CloudTracker.

	
	Query the logs to determine which principals touch which ARNs.

	
	For each IAM principal, create a list of ARNs.

	For each ARN, plug that ARN into a policy_sentry yml file, and determine the CRUD level based on a lazy comparison of the action listed in the cloudtrail log vs the resource ARN.

	And then run the policy_sentry yml file to generate an IAM policy that would have worked.

This was discussed in the original Hacker News post. [https://news.ycombinator.com/item?id=21262954].

Library Usage

Policy Sentry can be used as a Python library. Check out this documentation for more information and examples.

Library Usage

	Getting Started with the Library

	Examples
	Querying the IAM Database

	Writing Policies

	Analyzing Policies

	Module Reference
	Querying

	Writing

	Analyzing

	Utilities

Getting Started with the Library

When using Policy Sentry manually, you have to build a local database file with the initialize function.

However, if you are developing your own Python code and you want to import Policy Sentry as a third party package, you can skip the initialization and leverage the local database file that is bundled with the Python package itself.

This is especially useful for developers who wish to leverage Policy Sentry’s capabilities that require the use of the IAM database (such as querying the IAM database table). This way, you don’t have to initialize the database and can just query it immediately.

The code example is located here [https://github.com/salesforce/policy_sentry/blob/master/examples/library-usage/example.py]. It is also shown below.

from policy_sentry.querying.actions import get_actions_for_service

def example():
 actions = get_actions_for_service('cloud9') # Then you can leverage any method that requires access to the database.
 for action in actions:
 print(action)

if __name__ == '__main__':
 example()

Try running the code from the root of the repository:

./examples/library-usage/example.py

The results will look like this:

cloud9:createenvironmentec2
cloud9:createenvironmentmembership
cloud9:deleteenvironment
cloud9:deleteenvironmentmembership
cloud9:describeenvironmentmemberships
cloud9:describeenvironmentstatus
cloud9:describeenvironments
cloud9:getusersettings
cloud9:listenvironments
cloud9:updateenvironment
cloud9:updateenvironmentmembership
cloud9:updateusersettings

Examples

These are examples for the modules and functions that will be of interest for developers leveraging Policy Sentry as a Python library.

Library examples

	Querying the IAM Database
	All

	Actions

	ARNs

	Conditions

	Writing Policies
	Actions Mode: Writing Policies by providing a list of Actions

	CRUD Mode: Writing Policies by Access Levels and ARNs

	Analyzing Policies
	Analyzing by access level

	Expanding actions from a policy file

Querying the IAM Database

The following are examples of how to leverage some of the functions available from Policy Sentry. The functions selected are likely to be of most interest to other developers.

These ones relate to querying the IAM database.

All

querying.all.get_all_services

#!/usr/bin/env python

from policy_sentry.querying.all import get_all_service_prefixes

if __name__ == '__main__':

 all_service_prefixes = get_all_service_prefixes()
 print(all_service_prefixes)

"""
Output:

A list of every service prefix (like 'kms' or 's3') available in the IAM database.
Note that this will not include services that do not support any ARN types, like AWS IQ.
"""

querying.all.get_all_actions

#!/usr/bin/env python

from policy_sentry.querying.all import get_all_actions

if __name__ == '__main__':

 all_actions = get_all_actions()
 print(all_actions)

"""
Output:

Every IAM action available across all services, without duplicates
"""

Actions

querying.actions.get_action_data

#!/usr/bin/env python

from policy_sentry.querying.actions import get_action_data
import json

if __name__ == '__main__':

 output = get_action_data('ram', 'createresourceshare')
 print(json.dumps(output, indent=4))

"""
Output:

{
 'ram': [
 {
 'action': 'ram:createresourceshare',
 'description': 'Create resource share with provided resource(s) and/or principal(s)',
 'access_level': 'Permissions management',
 'resource_arn_format': 'arn:${Partition}:ram:${Region}:${Account}:resource-share/${ResourcePath}',
 'condition_keys': [
 'ram:RequestedResourceType',
 'ram:ResourceArn',
 'ram:RequestedAllowsExternalPrincipals'
],
 'dependent_actions': None
 },
 {
 'action': 'ram:createresourceshare',
 'description': 'Create resource share with provided resource(s) and/or principal(s)',
 'access_level': 'Permissions management',
 'resource_arn_format': '*',
 'condition_keys': [
 'aws:RequestTag/${TagKey}',
 'aws:TagKeys'
],
 'dependent_actions': None
 }
]
}
"""

querying.actions.get_actions_for_service

#!/usr/bin/env python
from policy_sentry.querying.actions import get_actions_for_service
import json

if __name__ == '__main__':
 output = get_actions_for_service('cloud9')
 print(json.dumps(output, indent=4))

"""
Output:

[
 'ram:acceptresourceshareinvitation',
 'ram:associateresourceshare',
 'ram:createresourceshare',
 'ram:deleteresourceshare',
 'ram:disassociateresourceshare',
 'ram:enablesharingwithawsorganization',
 'ram:rejectresourceshareinvitation',
 'ram:updateresourceshare'
]
"""

querying.actions.get_actions_matching_condition_key

#!/usr/bin/env python

from policy_sentry.querying.actions import get_actions_matching_condition_key
import json

if __name__ == '__main__':

 output = get_actions_matching_condition_key("ses", "ses:FeedbackAddress")
 print(json.dumps(output, indent=4))

"""
Output:

[
 'ses:sendemail',
 'ses:sendbulktemplatedemail',
 'ses:sendcustomverificationemail',
 'ses:sendemail',
 'ses:sendrawemail',
 'ses:sendtemplatedemail'
]
"""

querying.actions.get_actions_supporting_wilcards_only

#!/usr/bin/env python

from policy_sentry.querying.actions import get_actions_matching_condition_key
import json

if __name__ == '__main__':

 output = get_actions_matching_condition_key("ses", "ses:FeedbackAddress")
 print(json.dumps(output, indent=4))

"""
Output:

[
 'ses:sendemail',
 'ses:sendbulktemplatedemail',
 'ses:sendcustomverificationemail',
 'ses:sendemail',
 'ses:sendrawemail',
 'ses:sendtemplatedemail'
]
"""

querying.actions.get_actions_with_access_levels

#!/usr/bin/env python

from policy_sentry.querying.actions import get_actions_with_access_level
import json

if __name__ == '__main__':

 output = get_actions_with_access_level('s3', 'Permissions management')
 print(json.dumps(output, indent=4))

"""
Output:

 s3:bypassgovernanceretention
 s3:deleteaccesspointpolicy
 s3:deletebucketpolicy
 s3:objectowneroverridetobucketowner
 s3:putaccesspointpolicy
 s3:putaccountpublicaccessblock
 s3:putbucketacl
 s3:putbucketpolicy
 s3:putbucketpublicaccessblock
 s3:putobjectacl
 s3:putobjectversionacl
"""

querying.actions.get_actions_with_arn_type_and_access_level

#!/usr/bin/env python

from policy_sentry.querying.actions import get_actions_with_arn_type_and_access_level
import json

if __name__ == '__main__':

 output = get_actions_with_arn_type_and_access_level("ram", "resource-share", "Permissions management")
 print(json.dumps(output, indent=4))

"""
Output:

[
 'ram:associateresourceshare',
 'ram:createresourceshare',
 'ram:deleteresourceshare',
 'ram:disassociateresourceshare',
 'ram:updateresourceshare'
]
"""

querying.actions.get_dependent_actions

#!/usr/bin/env python

from policy_sentry.querying.actions import get_dependent_actions
import json

if __name__ == '__main__':

 output = get_dependent_actions(["ec2:associateiaminstanceprofile"])
 print(json.dumps(output, indent=4))

"""
Output:

[
 "iam:passrole"
]
"""

ARNs

querying.arns.get_arn_type_details

#!/usr/bin/env python

from policy_sentry.querying.arns import get_arn_type_details
import json

if __name__ == '__main__':

 output = get_arn_type_details("cloud9", "environment")
 print(json.dumps(output, indent=4))

"""
Output:

{
 "resource_type_name": "environment",
 "raw_arn": "arn:${Partition}:cloud9:${Region}:${Account}:environment:${ResourceId}",
 "condition_keys": None
}
"""

querying.arns.get_arn_types_for_service

#!/usr/bin/env python

from policy_sentry.querying.arns import get_arn_types_for_service
import json

if __name__ == '__main__':

 output = get_arn_types_for_service("s3")
 print(json.dumps(output, indent=4))

"""
Output:

{
 "accesspoint": "arn:${Partition}:s3:${Region}:${Account}:accesspoint/${AccessPointName}",
 "bucket": "arn:${Partition}:s3:::${BucketName}",
 "object": "arn:${Partition}:s3:::${BucketName}/${ObjectName}",
 "job": "arn:${Partition}:s3:${Region}:${Account}:job/${JobId}",
}
"""

querying.arns.get_raw_arns_for_service

#!/usr/bin/env python

from policy_sentry.querying.arns import get_raw_arns_for_service
import json

if __name__ == '__main__':

 output = get_raw_arns_for_service("s3")
 print(json.dumps(output, indent=4))

"""
Output:

[
 "arn:${Partition}:s3:${Region}:${Account}:accesspoint/${AccessPointName}",
 "arn:${Partition}:s3:::${BucketName}",
 "arn:${Partition}:s3:::${BucketName}/${ObjectName}",
 "arn:${Partition}:s3:${Region}:${Account}:job/${JobId}"
]
"""

Conditions

querying.conditions.get_condition_key_details

#!/usr/bin/env python

from policy_sentry.querying.conditions import get_condition_key_details
import json

if __name__ == '__main__':

 output = get_condition_key_details("cloud9", "cloud9:Permissions")
 print(json.dumps(output, indent=4))

"""
Output:

{
 "name": "cloud9:Permissions",
 "description": "Filters access by the type of AWS Cloud9 permissions",
 "condition_value_type": "string"
}
"""

querying.conditions.get_condition_keys_for_service

#!/usr/bin/env python

from policy_sentry.querying.conditions import get_condition_keys_for_service
import json

if __name__ == '__main__':

 output = get_condition_keys_for_service("cloud9")
 print(json.dumps(output, indent=4))

"""
Output:

[
 'cloud9:EnvironmentId',
 'cloud9:EnvironmentName',
 'cloud9:InstanceType',
 'cloud9:Permissions',
 'cloud9:SubnetId',
 'cloud9:UserArn'
]
"""

Writing Policies

The following are examples of how to leverage some of the functions available from Policy Sentry. The functions selected are likely to be of most interest to other developers.

These ones refer to leveraging Policy Sentry as a library to write IAM policies.

Actions Mode: Writing Policies by providing a list of Actions

#!/usr/bin/env python

from policy_sentry.writing.template import get_actions_template_dict
from policy_sentry.command.write_policy import write_policy_with_template
import json

if __name__ == '__main__':

 actions_template = get_actions_template_dict()
 actions_to_add = ['kms:CreateGrant', 'kms:CreateCustomKeyStore', 'ec2:AuthorizeSecurityGroupEgress',
 'ec2:AuthorizeSecurityGroupIngress']
 actions_template['actions'].extend(actions_to_add)
 policy = write_policy_with_template(actions_template)
 print(json.dumps(policy, indent=4))

"""
Output:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "KmsPermissionsmanagementKmskey",
 "Effect": "Allow",
 "Action": [
 "kms:creategrant"
],
 "Resource": [
 "arn:${Partition}:kms:${Region}:${Account}:key/${KeyId}"
]
 },
 {
 "Sid": "Ec2WriteSecuritygroup",
 "Effect": "Allow",
 "Action": [
 "ec2:authorizesecuritygroupegress",
 "ec2:authorizesecuritygroupingress"
],
 "Resource": [
 "arn:${Partition}:ec2:${Region}:${Account}:security-group/${SecurityGroupId}"
]
 },
 {
 "Sid": "MultMultNone",
 "Effect": "Allow",
 "Action": [
 "kms:createcustomkeystore",
 "cloudhsm:describeclusters"
],
 "Resource": [
 "*"
]
 }
]
}
"""

CRUD Mode: Writing Policies by Access Levels and ARNs

#!/usr/bin/env python

from policy_sentry.writing.template import get_crud_template_dict
from policy_sentry.command.write_policy import write_policy_with_template
import json

if __name__ == '__main__':

 crud_template = get_crud_template_dict()
 wildcard_actions_to_add = ["kms:createcustomkeystore", "cloudhsm:describeclusters"]
 crud_template['mode'] = 'crud'
 crud_template['read'].append("arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret")
 crud_template['write'].append("arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret")
 crud_template['list'].append("arn:aws:s3:::example-org-sbx-vmimport/stuff")
 crud_template['permissions-management'].append("arn:aws:kms:us-east-1:123456789012:key/123456")
 crud_template['wildcard'].extend(wildcard_actions_to_add)
 crud_template['tagging'].append("arn:aws:ssm:us-east-1:123456789012:parameter/test")
 # Modify it
 policy = write_policy_with_template(crud_template)
 print(json.dumps(policy, indent=4))

"""
Output:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "MultMultNone",
 "Effect": "Allow",
 "Action": [
 "kms:createcustomkeystore"
],
 "Resource": [
 "*"
]
 },
 {
 "Sid": "SecretsmanagerReadSecret",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:describesecret",
 "secretsmanager:getresourcepolicy",
 "secretsmanager:getsecretvalue",
 "secretsmanager:listsecretversionids"
],
 "Resource": [
 "arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret"
]
 },
 {
 "Sid": "SecretsmanagerWriteSecret",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:cancelrotatesecret",
 "secretsmanager:deletesecret",
 "secretsmanager:putsecretvalue",
 "secretsmanager:restoresecret",
 "secretsmanager:rotatesecret",
 "secretsmanager:updatesecret",
 "secretsmanager:updatesecretversionstage"
],
 "Resource": [
 "arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret"
]
 },
 {
 "Sid": "KmsPermissionsmanagementKmskey",
 "Effect": "Allow",
 "Action": [
 "kms:creategrant",
 "kms:putkeypolicy",
 "kms:retiregrant",
 "kms:revokegrant"
],
 "Resource": [
 "arn:aws:kms:us-east-1:123456789012:key/123456"
]
 }
]
}
"""

Analyzing Policies

The following are examples of how to leverage some of the functions available from Policy Sentry. The functions selected are likely to be of most interest to other developers.

These ones relate to the analysis features.

Analyzing by access level

Determine if a policy has any actions with a given access level. This is particularly useful when determining who has ‘Permissions management’ level access.

analysis.analyze_by_access_level

#!/usr/bin/env python
from policy_sentry.analysis.analyze import analyze_by_access_level
import json

if __name__ == '__main__':
 permissions_management_policy = {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 # These ones are Permissions management
 "ecr:SetRepositoryPolicy",
 "secretsmanager:DeleteResourcePolicy",
 "iam:UpdateAccessKey",
 # These ones are not permissions management
 "ecr:GetRepositoryPolicy",
 "ecr:DescribeRepositories",
 "ecr:ListImages",
 "ecr:DescribeImages",
],
 "Resource": "*"
 }
]
 }
 permissions_management_actions = analyze_by_access_level(permissions_management_policy, "Permissions management")
 print(json.dumps(permissions_management_actions, indent=4))

"""
Output:

[
 'ecr:setrepositorypolicy',
 'iam:updateaccesskey',
 'secretsmanager:deleteresourcepolicy'
]
"""

Expanding actions from a policy file

#!/usr/bin/env python

from policy_sentry.util.policy_files import get_actions_from_policy
from policy_sentry.analysis.analyze import determine_actions_to_expand
import json

POLICY_JSON_TO_EXPAND = {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloud9:*",
],
 "Resource": "*"
 }
]
}

if __name__ == '__main__':

 requested_actions = get_actions_from_policy(POLICY_JSON_TO_EXPAND)
 expanded_actions = determine_actions_to_expand(requested_actions)
 print(json.dumps(expanded_actions, indent=4))

"""
Output:

[
 "cloud9:createenvironmentec2",
 "cloud9:createenvironmentmembership",
 "cloud9:deleteenvironment",
 "cloud9:deleteenvironmentmembership",
 "cloud9:describeenvironmentmemberships",
 "cloud9:describeenvironments",
 "cloud9:describeenvironmentstatus",
 "cloud9:getusersettings",
 "cloud9:listenvironments",
 "cloud9:updateenvironment",
 "cloud9:updateenvironmentmembership",
 "cloud9:updateusersettings"
]
"""

Module Reference

These are modules and functions that will be of interest for developers leveraging Policy Sentry as a Python library.

Library reference

	Querying
	querying.all

	querying.actions

	querying.arns

	querying.conditions

	Writing
	command.write_policy

	writing.sid_group

	writing.template

	writing.validate

	writing.minimize

	Analyzing
	analysis.analyze

	Utilities
	util.policy_files

	util.arns

	util.file

	util.actions

Querying

querying.all

IAM Database queries that are not specific to either the Actions, ARNs, or Condition Keys tables.

	
policy_sentry.querying.all.get_all_actions(lowercase=False)

	Gets a huge list of all IAM actions. This is used as part of the policyuniverse approach to minimizing
IAM Policies to meet AWS-mandated character limits on policies.

	Parameters

	lowercase – Set to true to have the list of actions be in all lowercase strings.

	Returns

	A list of all actions present in the database.

	
policy_sentry.querying.all.get_all_service_prefixes()

	Gets all the AWS service prefixes from the actions table.

If the action table does NOT have specific IAM actions (and therefore only supports * actions),
then it will not be included in the response.

	Returns

	A list of all AWS service prefixes present in the table.

querying.actions

Methods that execute specific queries against the SQLite database for the ACTIONS table.
This supports the policy_sentry query functionality

	
policy_sentry.querying.actions.get_action_data(service, action_name)

	Get details about an IAM Action in JSON format.

	Parameters

	
	service – An AWS service prefix, like s3 or kms. Case insensitive.

	action_name – The name of an AWS IAM action, like GetObject. To get data about all actions in a service, specify “*”. Case insensitive.

	Returns

	A dictionary containing metadata about an IAM Action.

	
policy_sentry.querying.actions.get_actions_at_access_level_that_support_wildcard_arns_only(service_prefix, access_level)

	Get a list of actions at an access level that do not support restricting the action to resource ARNs.
Set service to “all” to get a list of actions across all services.

	Parameters

	
	service_prefix – A single AWS service prefix, like s3 or kms

	access_level – An access level as it is written in the database, such as ‘Read’, ‘Write’, ‘List’, ‘Permisssions management’, or ‘Tagging’

	Returns

	A list of actions

	
policy_sentry.querying.actions.get_actions_for_service(service_prefix)

	Get a list of available actions per AWS service

	Parameters

	service_prefix – An AWS service prefix, like s3 or kms

	Returns

	A list of actions

	
policy_sentry.querying.actions.get_actions_matching_condition_key(service_prefix, condition_key)

	Get a list of actions under a service that allow the use of a specified condition key

	Parameters

	
	service_prefix – A single AWS service prefix

	condition_key – The condition key to look for.

	Returns

	A list of actions

	
policy_sentry.querying.actions.get_actions_that_support_wildcard_arns_only(service_prefix)

	Get a list of actions that do not support restricting the action to resource ARNs.
Set service to “all” to get a list of actions across all services.

	Parameters

	service_prefix – A single AWS service prefix, like s3 or kms

	Returns

	A list of actions

	
policy_sentry.querying.actions.get_actions_with_access_level(service_prefix, access_level)

	Get a list of actions in a service under different access levels.

	Parameters

	
	service_prefix – A single AWS service prefix, like s3 or kms

	access_level – An access level as it is written in the database, such as ‘Read’, ‘Write’, ‘List’, ‘Permisssions management’, or ‘Tagging’

	Returns

	A list of actions

	
policy_sentry.querying.actions.get_actions_with_arn_type_and_access_level(service_prefix, resource_type_name, access_level)

	Get a list of actions in a service under different access levels, specific to an ARN format.

	Parameters

	
	service_prefix – A single AWS service prefix, like s3 or kms

	resource_type_name – The ARN type name, like bucket or key

	access_level – Access level like “Read” or “List” or “Permissions management”

	Returns

	A list of actions

	
policy_sentry.querying.actions.get_dependent_actions(actions_list)

	Given a list of IAM Actions, query the database to determine if the action has dependent actions in the
fifth column of the Resources, Actions, and Condition keys tables. If it does, add the dependent actions
to the list, and return the updated list.

It includes the original action in there as well. So, if you supply kms:CreateCustomKeyStore, it will give you kms:CreateCustomKeyStore as well as cloudhsm:DescribeClusters

To get dependent actions for a single given IAM action, just provide the action as a list with one item, like this:
get_dependent_actions(db_session, [‘kms:CreateCustomKeystore’])

	Parameters

	actions_list – A list of actions to use in querying the database for dependent actions

	Returns

	Updated list of actions, including dependent actions if applicable.

	
policy_sentry.querying.actions.get_privilege_info(service, action)

	Given a service, like “s3”
and an action, like “ListBucket”
return the info from the docs about that action, along with some of the info from the docs

	
policy_sentry.querying.actions.remove_actions_not_matching_access_level(actions_list, access_level)

	Given a list of actions, return a list of actions that match an access level

	Parameters

	
	actions_list – A list of actions

	access_level – ‘read’, ‘write’, ‘list’, ‘tagging’, or ‘permissions-management’

	Returns

	Updated list of actions, where the actions not matching the requested access level are removed.

	
policy_sentry.querying.actions.remove_actions_that_are_not_wildcard_arn_only(actions_list)

	Given a list of actions, remove the ones that CAN be restricted to ARNs, leaving only the ones that cannot.

	Parameters

	actions_list – A list of actions

	Returns

	An updated list of actions

	Return type

	list

querying.arns

Methods that execute specific queries against the SQLite database for the ARN table.
This supports the policy_sentry query functionality

	
policy_sentry.querying.arns.get_arn_data(service_prefix, resource_type_name)

	Get details about ARNs in JSON format.

	Parameters

	
	service_prefix – An AWS service prefix, like s3 or kms

	resource_type_name – The name of a resource type, like bucket or object. To get details on ALL arns in a service, specify “*” here.

	Returns

	Metadata about an ARN type

	
policy_sentry.querying.arns.get_arn_type_details(service_prefix, resource_type_name)

	Get details about ARNs in JSON format.

	Parameters

	
	service_prefix – An AWS service prefix, like s3 or kms

	resource_type_name – The name of a resource type, like bucket or object. To get details on ALL arns in a service, specify “*” here.

	Returns

	Metadata about an ARN type

	
policy_sentry.querying.arns.get_arn_types_for_service(service_prefix)

	Get a list of available ARN short names per AWS service.

	Parameters

	service_prefix – An AWS service prefix, like s3 or kms

	Returns

	A list of ARN types, like bucket or object

	
policy_sentry.querying.arns.get_raw_arns_for_service(service_prefix)

	Get a list of available raw ARNs per AWS service

	Parameters

	service_prefix – An AWS service prefix, like s3 or kms

	Returns

	A list of raw ARNs

	
policy_sentry.querying.arns.get_resource_type_name_with_raw_arn(raw_arn)

	Given a raw ARN, return the resource type name as shown in the database.

	Parameters

	raw_arn – The raw ARN stored in the database, like ‘arn:${Partition}:s3:::${BucketName}’

	Returns

	The resource type name, like bucket

querying.conditions

Methods that execute specific queries against the SQLite database for the CONDITIONS table.
This supports the policy_sentry query functionality

	
policy_sentry.querying.conditions.get_condition_key_details(service_prefix, condition_key_name)

	Get details about a specific condition key in JSON format

	Parameters

	
	service_prefix – An AWS service prefix, like ec2 or kms

	condition_key_name – The name of a condition key, like ec2:Vpc

	Returns

	Metadata about the condition key

	
policy_sentry.querying.conditions.get_condition_keys_available_to_raw_arn(raw_arn)

	Get a list of condition keys available to a RAW ARN

	Parameters

	raw_arn – The value in the database, like arn:${Partition}:s3:::${BucketName}/${ObjectName}

	
policy_sentry.querying.conditions.get_condition_keys_for_service(service_prefix)

	Get a list of available conditions per AWS service

	Parameters

	service_prefix – An AWS service prefix, like s3 or kms

	Returns

	A list of condition keys

	
policy_sentry.querying.conditions.get_condition_value_type(condition_key)

	Get the data type of the condition key - like Date, String, etc.
:param condition_key: A condition key, like a4b:filters_deviceType
:return:

	
policy_sentry.querying.conditions.get_conditions_for_action_and_raw_arn(action, raw_arn)

	Get a list of conditions available to an action.

	Parameters

	
	action – The IAM action, like s3:GetObject

	raw_arn – The raw ARN format specific to the action

	Returns

	

Writing

command.write_policy

writing.sid_group

sid_group indicates that this is a collection of policy-related data organized by their SIDs

	
class policy_sentry.writing.sid_group.SidGroup

	This class is critical to the creation of least privilege policies.
It uses the SIDs as namespaces. The namespaces follow this format:

{Servicename}{Accesslevel}{Resourcetypename}

So, a resulting statement’s SID might look like ‘S3ListBucket’

If a condition key is supplied (like s3:RequestJob), the SID string will be significantly longer.
It will resemble this format:

{Servicename}{Accesslevel}{Resourcetypename}{Conditionkeystring}{Conditiontypestring}{Conditionkeyvalue}

	For example: EC2 write actions on the security-group resource, using the following condition map:

	
	“Condition”: {

	“StringEquals”: {“ec2:ResourceTag/Owner”: “${aws:username}”}

}

	The resulting SID would be:

	Ec2WriteSecuritygroupResourcetagownerStringequalsAwsusername

	Or, for actions that support wildcard ARNs only, an example could be:

	Ec2WriteMultResourcetagownerStringequalsAwsusername

	
add_action_without_resource_constraint(action, sid_namespace='MultMultNone')

	This handles the cases where certain actions do not handle resource constraints - either by AWS, or for
flexibility when adding dependent actions.

	Parameters

	
	action – The single action to add to the SID namespace. For instance, s3:ListAllMyBuckets

	sid_namespace – MultMultNone by default. Other valid option is “SkipResourceConstraints”

	
add_by_arn_and_access_level(arn_list, access_level, conditions_block=None)

	This adds the user-supplied ARN(s), service prefixes, access levels, and condition keys (if applicable) given
by the user. It derives the list of IAM actions based on the user’s requested ARNs and access levels.

	Parameters

	
	arn_list – Just a list of resource ARNs.

	access_level – “Read”, “List”, “Tagging”, “Write”, or “Permissions management”

	conditions_block – Optionally, a condition block with one or more conditions

	
add_by_list_of_actions(supplied_actions)

	Takes a list of actions, queries the database for corresponding arns, adds them to the object.

	Parameters

	supplied_actions – A list of supplied actions

	
add_overrides(overrides)

	To override resource constraint requirements - i.e., instead of restricting s3:PutObject to a path and
allowing s3:PutObject to * resources, put s3:GetObject here.

	
add_requested_service_wide(service_prefixes, access_level)

	When a user requests all wildcard-only actions available under a service at a specific access level

	Parameters

	
	service_prefixes – A list of service prefixes

	access_level – The requested access level

	
add_wildcard_only_actions(provided_wildcard_actions)

	Given a list of IAM actions, add individual IAM Actions that do not support resource constraints to the MultMultNone SID

	Parameters

	provided_wildcard_actions – list actions provided by the user.

	
add_wildcard_only_actions_matching_services_and_access_level(services, access_level)

	
	Parameters

	
	services – A list of AWS services

	access_level – An access level as it is written in the database, such as ‘Read’, ‘Write’, ‘List’,

‘Permissions management’, or ‘Tagging’

	
get_rendered_policy(minimize=None)

	Get the JSON rendered policy

	Parameters

	minimize – Reduce the character count of policies without creating overlap with other action names

	Return type

	dict

	
get_sid(sid)

	Get a single group by the SID identifier

	
get_sid_group()

	Get the whole SID group as JSON

	
get_universal_conditions()

	Get the universal conditions maps back as a dict

	Return type

	dict

	
list_sids()

	Get a list of all of them by their identifiers

	Return type

	list

	
process_template(cfg, minimize=None)

	Process the Policy Sentry template as a dict. This auto-detects whether or not the file is in CRUD mode or
Actions mode.

	Parameters

	
	cfg – The loaded YAML as a dict. Must follow Policy Sentry dictated format.

	minimize – Minimize the resulting statement with safe usage of wildcards to reduce policy length. Set

this to the character length you want - for example, 0, or 4. Defaults to none.

	
process_wildcard_only_actions()

	After (1) the list of wildcard-only single actions have been added and (2) the list of wildcard-only service-wide actions have been added, process them and store them under the proper SID.
:return:

	
remove_actions_duplicated_in_wildcard_arn()

	Removes actions from the object that are in a resource-specific ARN, as well as the * resource.
For example, if ssm:GetParameter is restricted to a specific parameter path, as well as *, then we want to
remove the * option to force least privilege.

	
remove_actions_not_matching_these(actions_to_keep)

	
	Parameters

	actions_to_keep – A list of actions to leave in the policy. All actions not in this list are removed.

	
remove_sids_with_empty_action_lists()

	
	Now that we’ve removed a bunch of actions, if there are SID groups without any actions,

	remove them so we don’t get SIDs with empty action lists

	
policy_sentry.writing.sid_group.create_policy_sid_namespace(service, access_level, resource_type_name, condition_block=None)

	Simply generates the SID name. The SID groups ARN types that share an access level.

For example, S3 objects vs. SSM Parameter have different ARN types - as do S3 objects vs S3 buckets. That’s how we
choose to group them.

	Parameters

	
	service – “ssm”

	access_level – “Read”

	resource_type_name – “parameter”

	condition_block – {“condition_key_string”: “ec2:ResourceTag/purpose”, “condition_type_string”:

“StringEquals”, “condition_value”: “test”}
:return: SsmReadParameter
:rtype: str

	
policy_sentry.writing.sid_group.get_wildcard_only_actions_matching_services_and_access_level(services, access_level)

	
	Parameters

	
	services – A list of AWS services

	access_level – An access level as it is written in the database, such as ‘Read’, ‘Write’, ‘List’,

‘Permissions management’, or ‘Tagging’

	
policy_sentry.writing.sid_group.remove_actions_that_are_not_wildcard_arn_only(actions_list)

	Given a list of actions, remove the ones that CAN be restricted to ARNs, leaving only the ones that cannot.

	Parameters

	actions_list – A list of actions

	Returns

	An updated list of actions

	Return type

	list

writing.template

Templates for the policy_sentry YML files.
These can be used for generating policies

	
policy_sentry.writing.template.create_actions_template()

	Generate the Actions YML template

	
policy_sentry.writing.template.create_crud_template()

	Generate the CRUD YML Template

	
policy_sentry.writing.template.get_actions_template_dict()

	Get the Actions template in dict format.

	
policy_sentry.writing.template.get_crud_template_dict()

	Generate the CRUD template in dict format

writing.validate

Validation for the Policy Sentry YML Templates.

	
policy_sentry.writing.validate.check(conf_schema, conf)

	Validates a user-supplied JSON vs a defined schema.
:param conf_schema: The Schema object that defines the required structure.
:param conf: The user-supplied schema to validate against the required structure.

	
policy_sentry.writing.validate.check_actions_schema(cfg)

	Determines whether the user-provided config matches the required schema for Actions mode

	
policy_sentry.writing.validate.check_crud_schema(cfg)

	Determines whether the user-provided config matches the required schema for CRUD mode

	
policy_sentry.writing.validate.validate_condition_block(condition_block)

	
	Parameters

	condition_block – {“condition_key_string”: “ec2:ResourceTag/purpose”, “condition_type_string”: “StringEquals”, “condition_value”: “test”}

	Returns

	

writing.minimize

Functions for Minimizing statements, heavily borrowed from policyuniverse.
https://github.com/Netflix-Skunkworks/policyuniverse/

IAM Policies have character limits, which apply to individual policies, and there are also limits on the total
aggregate policy sizes. As such, it is not possible to use exhaustive list of explicit IAM actions.
To have granular control of specific IAM policies, we must use wildcards on IAM Actions, only in a programmatic manner.

This is typically performed by humans by reducing policies to s3:Get*, ec2:Describe*, and other approaches of the sort.

Netflix’s PolicyUniverse has address

https://aws.amazon.com/iam/faqs/
Q: How many policies can I attach to an IAM role?
* For inline policies: You can add as many inline policies as you want to a user, role, or group, but

the total aggregate policy size (the sum size of all inline policies) per entity cannot exceed the following limits:
- User policy size cannot exceed 2,048 characters.
- Role policy size cannot exceed 10,240 characters.
- Group policy size cannot exceed 5,120 characters.

	For managed policies: You can add up to 10 managed policies to a user, role, or group.

	The size of each managed policy cannot exceed 6,144 characters.

	
policy_sentry.writing.minimize.check_min_permission_length(permission, minchars=None)

	Adapted version of policyuniverse’s _check_permission_length. We are commenting out the skipping prefix message
https://github.com/Netflix-Skunkworks/policyuniverse/blob/master/policyuniverse/expander_minimizer.py#L111

	
policy_sentry.writing.minimize.get_denied_prefixes_from_desired(desired_actions, all_actions)

	Adapted version of policyuniverse’s _get_denied_prefixes_from_desired, here: https://github.com/Netflix-Skunkworks/policyuniverse/blob/master/policyuniverse/expander_minimizer.py#L101

	
policy_sentry.writing.minimize.minimize_statement_actions(desired_actions, all_actions, minchars=None)

	This is a condensed version of policyuniverse’s minimize_statement_actions, changed for our purposes.
https://github.com/Netflix-Skunkworks/policyuniverse/blob/master/policyuniverse/expander_minimizer.py#L123

Analyzing

analysis.analyze

Functions to support the analyze capability in this tool

	
policy_sentry.analysis.analyze.analyze_by_access_level(policy_json, access_level)

	Determine if a policy has any actions with a given access level. This is particularly useful when determining who
has ‘Permissions management’ level access

	Parameters

	
	policy_json – a dictionary representing the AWS JSON policy

	access_level – The normalized access level - either ‘read’, ‘list’, ‘write’, ‘tagging’, or ‘permissions-management’

	
policy_sentry.analysis.analyze.analyze_statement_by_access_level(statement_json, access_level)

	Determine if a statement has any actions with a given access level.

	Parameters

	
	statement_json – a dictionary representing a statement from an AWS JSON policy

	access_level – The access level - either ‘Read’, ‘List’, ‘Write’, ‘Tagging’, or ‘Permissions management’

Utilities

util.policy_files

A few methods for parsing policies.

	
policy_sentry.util.policy_files.get_actions_from_json_policy_file(file)

	read the json policy file and return a list of actions

	
policy_sentry.util.policy_files.get_actions_from_policy(data)

	Given a policy dictionary, create a list of the actions

	
policy_sentry.util.policy_files.get_actions_from_statement(statement)

	Given a statement dictionary, create a list of the actions

util.arns

Functions to use for parsing ARNs, matching ARN types, and getting the right fragment/component from an ARN string,

	
policy_sentry.util.arns.arn_has_colons(arn)

	Given an ARN, determine if the ARN has colons in it. Just useful for the hacky methods for
parsing ARN namespaces. See
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html for more details on ARN namespacing.

	
policy_sentry.util.arns.arn_has_slash(arn)

	Given an ARN, determine if the ARN has a stash in it. Just useful for the hacky methods for
parsing ARN namespaces. See
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html for more details on ARN namespacing.

	
policy_sentry.util.arns.does_arn_match(arn_to_test, arn_in_database)

	Given two ARNs, determine if they have the same resource type.
:param arn_to_test: ARN provided by user
:param arn_in_database: Raw ARN that exists in the policy sentry database
:return: result of whether or not the ARNs match

	
policy_sentry.util.arns.get_account_from_arn(arn)

	Given an ARN, return the account ID in the ARN, if it is available. In certain cases like S3 it is not

	
policy_sentry.util.arns.get_partition_from_arn(arn)

	Given an ARN string, return the partition string. This is usually aws unless you are in C2S or
AWS GovCloud.

	
policy_sentry.util.arns.get_region_from_arn(arn)

	Given an ARN, return the region in the ARN, if it is available. In certain cases like S3 it is not

	
policy_sentry.util.arns.get_resource_from_arn(arn)

	Given an ARN, parse it according to ARN namespacing and return the resource. See
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html for more details on ARN namespacing.

	
policy_sentry.util.arns.get_resource_path_from_arn(arn)

	Given an ARN, parse it according to ARN namespacing and return the resource path. See
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html for more details on ARN namespacing.

	
policy_sentry.util.arns.get_resource_string(arn)

	Given an ARN, return the string after the account ID, no matter the ARN format.

	Parameters

	arn – arn:partition:service:region:account-id:resourcetype/resource

	Returns

	resourcetype/resource

	
policy_sentry.util.arns.get_service_from_arn(arn)

	Given an ARN string, return the service

	
policy_sentry.util.arns.parse_arn(arn)

	Given an ARN, split up the ARN into the ARN namespacing schema dictated by the AWS docs.

	
policy_sentry.util.arns.parse_arn_for_resource_type(arn)

	Parses the resource string (resourcetype/resource and other variants) and grab the resource type.

	Parameters

	arn –

	Returns

	

util.file

Functions that relate to manipulating files, loading files, and managing filepaths.

	
policy_sentry.util.file.read_yaml_file(filename)

	Reads a YAML file, safe loads, and returns the dictionary

	Parameters

	filename – name of the yaml file

	Returns

	dictionary of YAML file contents

util.actions

Text operations specific to IAM actions

	
policy_sentry.util.actions.get_action_name_from_action(action)

	Returns the lowercase action name from a service:action combination
:param action: ec2:DescribeInstance
:return: describeinstance

	
policy_sentry.util.actions.get_full_action_name(service, action_name)

	Gets the proper formatting for an action - the service, plus colon, plus action name.
:param service: service name, like s3
:param action_name: action name, like createbucket
:return: the resulting string

	
policy_sentry.util.actions.get_lowercase_action_list(action_list)

	Given a list of actions, return the list but in lowercase format

	
policy_sentry.util.actions.get_service_from_action(action)

	Returns the service name from a service:action combination
:param action: ec2:DescribeInstance
:return: ec2

Appendices

Additional knowledge bases and relevant documentation are covered here.

Appendices

	Implementation Strategy

	Comparison to related tools
	Policy Revocation Tools

	AWS Tools

	Log-based Policy Generators

	Other Infrastructure as Code Tools

	IAM Policies
	IAM Policy Elements

	Actions, Resources, and Condition Keys Per Service

	Minimization

Implementation Strategy

In the context of your overall organization strategy for AWS IAM, we recommend using a few measures for locking down your AWS environments with IAM:

	Use Policy Sentry [https://github.com/salesforce/policy_sentry/] to create Identity-based policies [https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html]

	Use Service Control Policies (SCPs) to lock down available API calls per account.

	A great collection of SCPs can be found on asecure.cloud [https://asecure.cloud/l/scp/].

	Control Tower has some excellent guidance on strategy for SCPs in their documentation. Note that they call it “Guardrails” but they are mostly SCPs. See the docs here [https://docs.aws.amazon.com/controltower/latest/userguide/guardrails-reference.html]

	Use Repokid [https://medium.com/netflix-techblog/introducing-aardvark-and-repokid-53b081bf3a7e] to revoke out of date policies as your application/roles mature.

	Use Resource-based policies [https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html] for all services that support them.

	A list of which services support resource-based policies can be found in the AWS documentation here [https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html].

	Never provision infrastructure manually; use Infrastructure as Code

	I highly suggest Terraform for IAC over other alternatives such as CloudFormation, Chef, or Puppet. Yevgeniy Brikman explains the reasons very well in this Gruntwork.io blog post [https://blog.gruntwork.io/why-we-use-terraform-and-not-chef-puppet-ansible-saltstack-or-cloudformation-7989dad2865c].

	I also suggest reading HashiCorp’s Unlocking the Cloud Operating Model Whitepaper [https://www.hashicorp.com/cloud-operating-model].

Comparison to related tools

Policy Revocation Tools

Repokid

RepoKid is a popular tool that was developed by Netflix, and is one of the more mature and battle-tested AWS IAM open source projects. It leverages AWS Access Advisor, which informs you how many AWS services your IAM Principal has access to, and how many of those services it has used in the last X amount of days or months. If you haven’t used a service within the last 30 days, it “repos” your policy, and strips it of the privileges it doesn’t use. It has some advanced features to allow for whitelisting roles and overall is a great tool.

One shortcoming is that AWS IAM Access Advisor only provides details at the service level (ex: S3-wide, or EC2-wide) and not down to the IAM Action level, so the revised policy is not very granular. However, RepoKid plays a unique role in the IAM ecosystem right now in that there are not any open source tools that provide similar functionality. For that reason, it is best to view RepoKid and Policy Sentry as complimentary.

Travis McPeak summarized the potential dynamic between Policy Sentry and RepoKid very well on Clint Gliber’s blog [https://programanalys.is/blog/tldr-sec-010-cloudflare-on-security-iam-least-priv-xss-in-firefox-ui/#policy_sentry---iam-least-privilege-policy-generator]:

Policy Sentry aims to make it easy to create initial least privilege policies and then Repokid takes away unused permissions.

Creating policies is difficult, so Policy Sentry creates policies based on top level goals and target resources, and then on the backend substitutes the applicable action list to generate the policy. This is very helpful for anybody creating the first version of a policy.

To help with simplicity these permissions will be assigned somewhat coarsely. So Repokid can use data to remove the specific actions that were granted and aren’t required. Also Repokid will repo down unused permissions once an application stops being used or scope changes.

AWS Tools

AWS Console - Visual Policy Editor

	AWS IAM Visual Policy Editor in the AWS Console [https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-start]

This policy generator is great in general and you should use it if you’re getting used to writing IAM policies.

It’s very similar to policy_sentry - you are able to bulk select according to access levels.

However, there are a number of downsides:

	Missing access level type: It does not specifically flag “Permissions management” access level

	No override capabilities for inaccurate Access Levels: Note how the ssm:PutParameter action is listed as “Tagging”. This is inaccurate; it should be “Write”. Policy_sentry allows you to override inaccurate access levels, whereas the Visual Policy Editor has had inaccurate Access levels for the last several years without any fixes.

[image: Visual Policy Editor - inaccurate access level]

	Not automated: Policy Sentry is, by design, meant for automated policy generation, whereas the Visual Policy Editor is meant to be manual.

	Console Access: It also requires access to the AWS Console.

	Extensibility: It’s open source and Pull Requests are welcome! With policy_sentry, we get more control.

On the positive side, it does walk you through creating policies with IAM Condition keys. However, we believe that policy_sentry’s approach, where we always have policies restricted to the least amount of resources - provides a greater benefit to the end user. Furthermore, we plan on supporting condition keys at some point in the future.

AWS Policy Generator (static website)

	AWS Policy Generator - static website [https://awspolicygen.s3.amazonaws.com/policygen.html]

AWS Policy Generator is a great tool; it supports IAM policies, as well as multiple types of resource-based policies (SQS Queue policy, S3 bucket policy, SNS Topic Policy, and VPC Endpoint Policy).

Loose ARN formatting: The regex expressions that it uses per-service does not require that actual valid resource ARNs are met - just that they meet the Regex requirement, which is uniform per-service. It just isn’t as accurate or up to date as the actual IAM policy generation through the AWS Console

Missing actions: To determine the list of actions, it relies on a file titled policies.js [https://awspolicygen.s3.amazonaws.com/js/policies.js], which contains a list of IAM Actions. However, this file is not as well maintained as the Actions, Resources, and Condition Keys tables [https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html]. For example, it does not have these actions:

a4b:describe*
appstream:get*
cloudformation:preview*
codestar:verify*
ds:check*
health:get*
health:list*
kinesisanalytics:get*
lightsail:list*
mobilehub:validate*
resource-groups:describe*

Log-based Policy Generators

CloudTracker

	CloudTracker [https://github.com/duo-labs/cloudtracker]

Policy Sentry is somewhat similar to CloudTracker. CloudTracker queries CloudTrail logs using Amazon Athena and attempts to “guess” the matching between CloudTrail actions and IAM actions, then generates a policy. Given that there is not a 1-to-1 mapping between the names of Actions listed in CloudTrail log entries and the names AWS IAM Actions, the results are not always accurate. It is a good place to start, but the generated policies all contain Resources: “*”, so it is up to the user to restrict those IAM actions to only the necessary resources.

Trailscraper

	Trailscraper [https://github.com/flosell/trailscraper/]

Trailscraper does automated policy generation from CloudTrail logs, but there are some major limitations:

	The generated policies have Resources set to *`, not to a specific resource ARN

	It downloads all of the CloudTrail logs. This takes a while.

	Cloudtracker (https://github.com/duo-labs/cloudtracker) uses Amazon Athena, which is more efficient. In the future, I’d like to see a combined approach between all three of these tools to generate IAM policies based on Cloudtrail logs. 3. It is accurate to the point where there is a 1-to-1 mapping with the IAM actions vs CloudTrail logs. As I mentioned in other comments, since not every IAM Action is logged in CloudTrail and not every CloudTrail action matches IAM Actions, the results are not always accurate.

Other Infrastructure as Code Tools

aws-iam-generator

	aws-iam-generator [https://github.com/awslabs/aws-iam-generator]

aws-iam-generator still requires you to write the actual policy templates from scratch, and then they allow you to re-use those policy templates.

Consider the JSON under this area [https://github.com/awslabs/aws-iam-generator#managed-policies-derived-from-a-jinja2-template] of their README.

It’s essentially a method for managing their policies as code - but it doesn’t make those policies restricted to certain resources, unless you configure it that way. Using policy_sentry --write-policy, you have to supply a file with resource ARNs, and it will write the policy for you, rather than supplying a policy file, and hoping the ARNs fit that use case.

Terraform

The rationale described above also generally applies to Terraform, in that it still requires you to write the actual policy templates from scratch, and then you can re-use those policy templates. However, you still need to make those policies secure by default.

IAM Policies

This document covers:

	Elements of an IAM Policy

	Breakdown of the tables for Actions, Resources, and Condition keys per service

	Generally how policy_sentry uses these tables to generate IAM Policies

IAM Policy Elements

The following IAM JSON Policy elements are included in policy_sentry-generated IAM Policies:

	Version [https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_version.html]: specifies policy language versions dictated by AWS. There are two options - 2012-10-17 and 2008-10-17. policy_sentry generates policies for the most recent policy language - 2012-10-17

	Statement [https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_statement.html]: There is one statement array per policy, with multiple statements/SIDs inside that statement. The elements of a single statement/SID are listed below.

	SID [https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_sid.html]: Statement ID. Optional identifier for the policy statement. SID values can be assigned to each statement in a statement array.

	Effect [https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_effect.html]: Allow or explicit Deny. If there is any overlap on an action or actions with Allow vs. Deny, the Deny effect overrides the Allow.

	Action [https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_action.html]: This refers to the IAM action - i.e., s3:GetObject, or ec2:DescribeInstances. Action text in a statement can have wildcards included: for example, ec2:* covers all EC2 actions, and ec2:Describe* covers all EC2 actions prefixed with Describe - such as DescribeInstances, DescribeInstanceAttributes, etc.

	Resource [https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_resource.html]: This refers to an Amazon Resource Name (ARN) that the Action can be performed against. There are differences in ARN format per service. Those differences can be viewed in the AWS Docs on ARNs and Namespaces [https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html]

The ones we don’t use in this tool:

	Condition [https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html] (will be added in a future release)

	Principal [https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html]

	NotPrincipal [https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_notprincipal.html]

	NotResource [https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_notresource.html]

Actions, Resources, and Condition Keys Per Service

If you ever write or review IAM Policies, you should bookmark the documentation page for AWS Actions, Resources, and Context Keys here [https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html]

This documentation is the seed source for the database that we create in policy_sentry. It contains tables for (1) Actions, (2) Resources/ARNs, and (3) Condition Keys for each service. This documentation is of critical importance because every IAM action for every IAM service has different ARNs that it can apply to, and different Condition Keys that it can apply to.

Action Table

Consider the Action table snippet from KMS shown below (source documentation can be viewed on the KMS documentation here [https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awskeymanagementservice.html#awskeymanagementservice-actions-as-permissions]).

	Actions

	Access Level

	Resource Types

	Condition Keys

	Dependent Actions

	kms:CreateGrant

	Permissions management

	key*

	
	

	
	

	kms:CallerAccount

	

	kms:CreateCustomKeyStore

	Write

	
	

	
	cloudhsm:DescribeClusters

As you can see, the Actions Table contains these columns:

	Actions: The name of the IAM Action

	Access Level: how the action is classified. This is limited to List, Read, Write, Permissions management, or Tagging.

	This classification can help you understand the level of access that an action grants when you use it in a policy.

	For more information about access levels, see Understanding Access Level Summaries Within Policy Summaries [https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_understand-policy-summary-access-level-summaries.html].

	Condition Keys: The condition key available for that action. There are some service specific ones that will contain the service namespace (i.e., ec2, or in this case, kms. Sometimes, there are AWS-level condition keys that are available to only some actions within some services, such as aws:SourceAccount [https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount]. If those are available to the action, they will be supplied in that column.

	Dependent Actions: Some actions require that other actions can be executed by the IAM Principal. The example above indicates that in order to call kms:CreateCustomKeyStore, you must be able to also execute cloudhsm:DescribeClusters.

And most importantly to the context of this tool, there is the Resource Types column:

	Resource Types: This indicates whether the action supports resource-level permissions - i.e., restricting IAM Actions by ARN. If there is a value here, it points to the ARN Table shown later in the documentation.

	In the example above, you can see that kms:CreateCustomKeyStore’s Resource Types cell is blank; this indicates that kms:CreateCustomKeyStore can only have * as the resource type.

	Conversely, for kms:CreateGrant, the action can have either (1) * as the resource type, or key* as the resource type. The ARN format is not actually key*, it just points to that ARN format in the ARN Table explained below.

ARN Table

Consider the KMS ARN Table shown below (the source documentation can be viewed on the AWS website here [https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awskeymanagementservice.html#awskeymanagementservice-resources-for-iam-policies].

	Resource Types

	ARN

	Condition Keys

	alias

	arn:${Partition}:kms:${Region}:${Account}:alias/${Alias}

	

	key

	arn:${Partition}:kms:${Region}:${Account}:key/${KeyId}

	

The ARN Table has three fields:

	Resource Types: The name of the resource type. This corresponds to the “Resource Types” field in the Action table. In the example above, the types are:

	alias

	key

	ARN: This shows the required ARN format that can be specified in IAM policies for the IAM Actions that allow this ARN format. In the example above the ARN types are:

	arn:${Partition}:kms:${Region}:${Account}:alias/${Alias}

	arn:${Partition}:kms:${Region}:${Account}:key/${KeyId}

	Condition Keys: This specifies condition context keys that you can include in an IAM policy statement only when both (1) this resource and (2) a supporting action from the table above are included in the statement.

Condition Keys Table

There is also a Condition Keys table. An example is shown below.

	Condition Keys

	Type

	Description

	kms:BypassPolicyLockoutSafetyCheck

	Bool

	Controls access to the CreateKey and PutKeyPolicy operations based on the value of the BypassPolicyLockoutSafetyCheck parameter in the request.

	kms:CallerAccount

	String

	Controls access to specified AWS KMS operations based on the AWS account ID of the caller. You can use this condition key to allow or deny access to all IAM users and roles in an AWS account in a single policy statement.

Note: While policy_sentry does import the Condition Keys table into the database, it does not currently provide functionality to insert these condition keys into the policies. This is due to the complexity of each condition key, and the dubious viability of mandating those condition keys for every IAM policy.

We might support the Global Condition keys for IAM policies in the future, perhaps to be supplied via a user config file, but that functionality is not on the roadmap at this time. For more information on Global Condition Keys, see this documentation [https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#AvailableKeys].

References

	ARN Formats and Service Namespaces [https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html]

	IAM Policy Elements [https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html]

	IAM Actions, Resources, and Context Keys per service [https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html]

	Actions Table explanation [https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html#actions_table]

	ARN Table explanation [https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html#resources_table]

	Condition Keys Table explanation [https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html#context_keys_table]

	Global Condition Keys [https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#AvailableKeys]

Minimization

This document explains the approach in the file titled policy_sentry/shared/minimize.py, which is heavily borrowed from Netflix’s policyuniverse [https://github.com/Netflix-Skunkworks/policyuniverse/]

IAM Policies have character limits, which apply to individual policies, and there are also limits on the total aggregate policy sizes. As such, it is not possible to use exhaustive list of explicit IAM actions. To have granular control of specific IAM policies, we must use wildcards on IAM Actions, only in a programmatic manner.

This is typically performed by humans by reducing policies to s3:Get*, ec2:Describe*, and other approaches of the sort.

Netflix’s PolicyUniverse1 [https://github.com/Netflix-Skunkworks/policyuniverse/] has addressed this problem using a few functions that we borrowed directly, and slightly modified. All of these functions are inside the aforementioned minimize.py file, and are also listed below:

	get_denied_prefixes_from_desired [https://github.com/Netflix-Skunkworks/policyuniverse/blob/master/policyuniverse/expander_minimizer.py#L101]

	check_min_permission_length [https://github.com/Netflix-Skunkworks/policyuniverse/blob/master/policyuniverse/expander_minimizer.py#L111]

	minimize_statement_actions [https://github.com/Netflix-Skunkworks/policyuniverse/blob/master/policyuniverse/expander_minimizer.py#L123]

We modified the functions, in short, because of how we source our list of IAM actions. Policyuniverse leverages a file titled data.json, which appears to be a manually altered version of the policies.js [https://awspolicygen.s3.amazonaws.com/js/policies.js] file included as part of the AWS Policy Generator website [https://awspolicygen.s3.amazonaws.com/policygen.html]. However, that page is not updated as frequently. It also does not include the same details that we get from the Actions, Resources, and Condition Keys page [https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html], like the Dependent Actions Field, service-specific conditions, and most importantly the multiple ARN format types that can apply to any particular IAM Action.

See the AWS IAM FAQ page for supporting details on IAM Size. For your convenience, the relevant text is clipped below.

Q: How many policies can I attach to an IAM role?

	For inline policies: You can add as many inline policies as you want to a user, role, or group, but
the total aggregate policy size (the sum size of all inline policies) per entity cannot exceed the following limits:

	User policy size cannot exceed 2,048 characters.

	Role policy size cannot exceed 10,240 characters.

	Group policy size cannot exceed 5,120 characters.

	For managed policies: You can add up to 10 managed policies to a user, role, or group.

	The size of each managed policy cannot exceed 6,144 characters.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 policy_sentry	

 	
 	
 policy_sentry.analysis.analyze	

 	
 	
 policy_sentry.querying.actions	

 	
 	
 policy_sentry.querying.all	

 	
 	
 policy_sentry.querying.arns	

 	
 	
 policy_sentry.querying.conditions	

 	
 	
 policy_sentry.util.actions	

 	
 	
 policy_sentry.util.arns	

 	
 	
 policy_sentry.util.file	

 	
 	
 policy_sentry.util.policy_files	

 	
 	
 policy_sentry.writing.minimize	

 	
 	
 policy_sentry.writing.sid_group	

 	
 	
 policy_sentry.writing.template	

 	
 	
 policy_sentry.writing.validate	

Index

 A
 | C
 | D
 | G
 | L
 | M
 | P
 | R
 | S
 | V

A

 	
 	add_action_without_resource_constraint() (policy_sentry.writing.sid_group.SidGroup method)

 	add_by_arn_and_access_level() (policy_sentry.writing.sid_group.SidGroup method)

 	add_by_list_of_actions() (policy_sentry.writing.sid_group.SidGroup method)

 	add_overrides() (policy_sentry.writing.sid_group.SidGroup method)

 	add_requested_service_wide() (policy_sentry.writing.sid_group.SidGroup method)

 	
 	add_wildcard_only_actions() (policy_sentry.writing.sid_group.SidGroup method)

 	add_wildcard_only_actions_matching_services_and_access_level() (policy_sentry.writing.sid_group.SidGroup method)

 	analyze_by_access_level() (in module policy_sentry.analysis.analyze)

 	analyze_statement_by_access_level() (in module policy_sentry.analysis.analyze)

 	arn_has_colons() (in module policy_sentry.util.arns)

 	arn_has_slash() (in module policy_sentry.util.arns)

C

 	
 	check() (in module policy_sentry.writing.validate)

 	check_actions_schema() (in module policy_sentry.writing.validate)

 	check_crud_schema() (in module policy_sentry.writing.validate)

 	
 	check_min_permission_length() (in module policy_sentry.writing.minimize)

 	create_actions_template() (in module policy_sentry.writing.template)

 	create_crud_template() (in module policy_sentry.writing.template)

 	create_policy_sid_namespace() (in module policy_sentry.writing.sid_group)

D

 	
 	does_arn_match() (in module policy_sentry.util.arns)

G

 	
 	get_account_from_arn() (in module policy_sentry.util.arns)

 	get_action_data() (in module policy_sentry.querying.actions)

 	get_action_name_from_action() (in module policy_sentry.util.actions)

 	get_actions_at_access_level_that_support_wildcard_arns_only() (in module policy_sentry.querying.actions)

 	get_actions_for_service() (in module policy_sentry.querying.actions)

 	get_actions_from_json_policy_file() (in module policy_sentry.util.policy_files)

 	get_actions_from_policy() (in module policy_sentry.util.policy_files)

 	get_actions_from_statement() (in module policy_sentry.util.policy_files)

 	get_actions_matching_condition_key() (in module policy_sentry.querying.actions)

 	get_actions_template_dict() (in module policy_sentry.writing.template)

 	get_actions_that_support_wildcard_arns_only() (in module policy_sentry.querying.actions)

 	get_actions_with_access_level() (in module policy_sentry.querying.actions)

 	get_actions_with_arn_type_and_access_level() (in module policy_sentry.querying.actions)

 	get_all_actions() (in module policy_sentry.querying.all)

 	get_all_service_prefixes() (in module policy_sentry.querying.all)

 	get_arn_data() (in module policy_sentry.querying.arns)

 	get_arn_type_details() (in module policy_sentry.querying.arns)

 	get_arn_types_for_service() (in module policy_sentry.querying.arns)

 	get_condition_key_details() (in module policy_sentry.querying.conditions)

 	get_condition_keys_available_to_raw_arn() (in module policy_sentry.querying.conditions)

 	get_condition_keys_for_service() (in module policy_sentry.querying.conditions)

 	
 	get_condition_value_type() (in module policy_sentry.querying.conditions)

 	get_conditions_for_action_and_raw_arn() (in module policy_sentry.querying.conditions)

 	get_crud_template_dict() (in module policy_sentry.writing.template)

 	get_denied_prefixes_from_desired() (in module policy_sentry.writing.minimize)

 	get_dependent_actions() (in module policy_sentry.querying.actions)

 	get_full_action_name() (in module policy_sentry.util.actions)

 	get_lowercase_action_list() (in module policy_sentry.util.actions)

 	get_partition_from_arn() (in module policy_sentry.util.arns)

 	get_privilege_info() (in module policy_sentry.querying.actions)

 	get_raw_arns_for_service() (in module policy_sentry.querying.arns)

 	get_region_from_arn() (in module policy_sentry.util.arns)

 	get_rendered_policy() (policy_sentry.writing.sid_group.SidGroup method)

 	get_resource_from_arn() (in module policy_sentry.util.arns)

 	get_resource_path_from_arn() (in module policy_sentry.util.arns)

 	get_resource_string() (in module policy_sentry.util.arns)

 	get_resource_type_name_with_raw_arn() (in module policy_sentry.querying.arns)

 	get_service_from_action() (in module policy_sentry.util.actions)

 	get_service_from_arn() (in module policy_sentry.util.arns)

 	get_sid() (policy_sentry.writing.sid_group.SidGroup method)

 	get_sid_group() (policy_sentry.writing.sid_group.SidGroup method)

 	get_universal_conditions() (policy_sentry.writing.sid_group.SidGroup method)

 	get_wildcard_only_actions_matching_services_and_access_level() (in module policy_sentry.writing.sid_group)

L

 	
 	list_sids() (policy_sentry.writing.sid_group.SidGroup method)

M

 	
 	minimize_statement_actions() (in module policy_sentry.writing.minimize)

P

 	
 	parse_arn() (in module policy_sentry.util.arns)

 	parse_arn_for_resource_type() (in module policy_sentry.util.arns)

 	policy_sentry.analysis.analyze (module)

 	policy_sentry.querying.actions (module)

 	policy_sentry.querying.all (module)

 	policy_sentry.querying.arns (module)

 	policy_sentry.querying.conditions (module)

 	policy_sentry.util.actions (module)

 	
 	policy_sentry.util.arns (module)

 	policy_sentry.util.file (module)

 	policy_sentry.util.policy_files (module)

 	policy_sentry.writing.minimize (module)

 	policy_sentry.writing.sid_group (module)

 	policy_sentry.writing.template (module)

 	policy_sentry.writing.validate (module)

 	process_template() (policy_sentry.writing.sid_group.SidGroup method)

 	process_wildcard_only_actions() (policy_sentry.writing.sid_group.SidGroup method)

R

 	
 	read_yaml_file() (in module policy_sentry.util.file)

 	remove_actions_duplicated_in_wildcard_arn() (policy_sentry.writing.sid_group.SidGroup method)

 	remove_actions_not_matching_access_level() (in module policy_sentry.querying.actions)

 	
 	remove_actions_not_matching_these() (policy_sentry.writing.sid_group.SidGroup method)

 	remove_actions_that_are_not_wildcard_arn_only() (in module policy_sentry.querying.actions)

 	(in module policy_sentry.writing.sid_group)

 	remove_sids_with_empty_action_lists() (policy_sentry.writing.sid_group.SidGroup method)

S

 	
 	SidGroup (class in policy_sentry.writing.sid_group)

V

 	
 	validate_condition_block() (in module policy_sentry.writing.validate)

Building the Docker Image

If you prefer using Docker instead of installing the script with Python, we support that as well.

Use this to build the docker image:

docker build -t kmcquade/policy_sentry .

Using the Docker Image

Use this to run some basic commands:

Basic commands with no arguments
docker run -i --rm kmcquade/policy_sentry:latest "--help"
docker run -i --rm kmcquade/policy_sentry:latest "query"

Query the database
docker run -i --rm kmcquade/policy_sentry:latest "query action-table --service all --access-level permissions-management"

The write-policy command also supports passing in the YML config via STDIN. Try it out here:

Write policies by passing in the config via STDIN
cat examples/yml/crud.yml | docker run -i --rm kmcquade/policy_sentry:latest "write-policy"
cat examples/yml/actions.yml | docker run -i --rm kmcquade/policy_sentry:latest "write-policy"

Initialize

initialize: This will create a SQLite database that contains all of the services available through the Actions, Resources, and Condition Keys documentation [https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html].

Note: This step is now optional. Typical use cases for running the initialize command are:
* If you want to run –fetch and build the latest database from the AWS Docs. This is good if you want to try out the latest cool services.
* If you want to verify the database contents on your own.
* If you want to build the SQLite database from the raw HTML files, rather than copying it from the package.

The database is stored in $HOME/.policy_sentry/aws.sqlite3.

The database is generated based on the HTML files stored in the policy_sentry/shared/data/docs/ directory.

Options

	--access-level-overrides-file (Optional): Path to your own custom access level overrides file, used to override the Access Levels per action provided by AWS docs. The default one is here [https://github.com/salesforce/policy_sentry/blob/master/policy_sentry/shared/data/access-level-overrides.yml].

	--fetch (Optional): Specify this flag to fetch the HTML Docs directly from the AWS website. This will be helpful if the docs in the Git repository are behind the live docs and you need to use the latest version of the docs right now.

	--build (Optional) Build the SQLite database from the HTML files rather than copying the SQLite database file from the python package. Defaults to false.

Usage

Initialize the database, using the existing Access Level Overrides file
policy_sentry initialize

Fetch the most recent version of the AWS documentation so you can experiment with new services.
This can be helpful in case the AWS HTML files in the Python package are outdated, even if it is a week old
policy_sentry initialize --fetch

Build the database file from the HTML files rather than using the bundled binary.
policy_sentry initialize --build

Initialize the database with a custom Access Level Overrides file

policy_sentry initialize --access-level-overrides-file ~/.policy_sentry/access-level-overrides.yml
policy_sentry initialize --access-level-overrides-file ~/.policy_sentry/overrides-resource-policies.yml

Skipping Initialization

When using Policy Sentry manually, you have to build a local database file with the initialize function.

However, if you are developing your own Python code and you want to import Policy Sentry as a third party package, you can skip the initialization and leverage the local database file that is bundled with the Python package itself.

This is especially useful for developers who wish to leverage Policy Sentry’s capabilities that require the use of the IAM database (such as querying the IAM database table). This way, you don’t have to initialize the database and can just query it immediately.

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_images/ndIXTQb.gif

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Policy Sentry Documentation

 		
 Overview

 		
 Motivation

 		
 Authoring Secure IAM Policies

 		
 Installation

 		
 Shell completion

 		
 Usage

 		
 Installation

 		
 Shell completion

 		
 Docker

 		
 Building the Docker Image

 		
 Using the Docker Image

 		
 Rebuilding the IAM Database

 		
 Initialize

 		
 Writing IAM Policies

 		
 CRUD Mode

 		
 Command options

 		
 Instructions

 		
 Wildcard-only section

 		
 Actions Mode

 		
 Command options

 		
 Instructions

 		
 CRUD Mode Examples

 		
 Example 1: Basic CRUD

 		
 Example 2: Skipping Resource Constraints

 		
 Example 3: Wildcard-only - Single Actions

 		
 Example 4: Wildcard only - Bulk Selection Service-Wide

 		
 Querying the IAM Database

 		
 Action table

 		
 Options

 		
 ARN Table

 		
 Options

 		
 Condition Table

 		
 Options

 		
 Terraform

 		
 Prerequisites

 		
 Note

 		
 Example

 		
 Cheat sheet

 		
 Commands

 		
 Policy Writing Commands

 		
 IAM Database Query Commands

 		
 Initialization (Optional)

 		
 Contributing

 		
 Contributing to Documentation

 		
 Building Documentation

 		
 Docstrings

 		
 IAM Database

 		
 How Policy Sentry uses the IAM database

 		
 Testing

 		
 Pipenv

 		
 Invoke

 		
 Local Unit Testing and Integration Testing: Quick and Easy

 		
 Running the Test Suite

 		
 Project Structure

 		
 Subfolders

 		
 Files and functions

 		
 Versioning

 		
 Version bumps

 		
 Roadmap

 		
 Condition Keys

 		
 Log-based policy generation

 		
 Library Usage

 		
 Getting Started with the Library

 		
 Examples

 		
 Querying the IAM Database

 		
 Writing Policies

 		
 Analyzing Policies

 		
 Module Reference

 		
 Querying

 		
 Writing

 		
 Analyzing

 		
 Utilities

 		
 Appendices

 		
 Implementation Strategy

 		
 Comparison to related tools

 		
 Policy Revocation Tools

 		
 AWS Tools

 		
 Log-based Policy Generators

 		
 Other Infrastructure as Code Tools

 		
 IAM Policies

 		
 IAM Policy Elements

 		
 Actions, Resources, and Condition Keys Per Service

 		
 Minimization

_images/3-SSM-visual-editor.png
v Actions Specify the actions allowed in Systems Manager

Switch to deny permissions €
close

Q Filter actions

Manual actions (add actions)

All Systems Manager actions (ssm:*)

Expand all | Collapse all
» List

» Read

v | Tagging (6 selected)
| AddTagsToResource ¢ CreateMaintenanceWindow «| PutParameter

¢ CreateDocument ¢ CreatePatchBaseline | RemoveTagsFromResource

» Write

_images/dn80hE0.gif

